Repulsive Shells (Supplemental)

Algorithm 2 MIDPOINTAPPROXIMATION(σ , τ , α)

- **Input:** A pair of non-intersecting triangles σ , τ given as triples of points in \mathbb{R}^3 , and a power α for the tangent-point energy.
- Output: Approximation of the tangent-point energy Φ using midpoint quadrature.

1: $(a_{\sigma}, a_{\tau}) \leftarrow (Area(\sigma), Area(\tau))$

2: $(c_{\sigma}, c_{\tau}) \leftarrow (Center(\sigma), Center(\tau))$

3: $n_{\sigma} \leftarrow \text{NORMAL}(\sigma)$

4: return $a_{\sigma} a_{\tau} |\langle n_{\sigma}, c_{\sigma} - c_{\tau} \rangle|^{\alpha} / |c_{\sigma} - c_{\tau}|^{2\alpha}$

Algorithm 3 AdaptiveMultipole $(\sigma^0, \tau^0, \alpha, \theta)$

- **Input:** A pair of non-intersecting triangles σ^0, τ^0 given as triples of points in \mathbb{R}^3 , a power α for the tangent-point energy, and a parameter $\theta > 0$ for the multipole acceptance criterion (Equation 18).
- Output: A multipole approximation of the tangent-point energy Φ, and its first-order derivatives $d_{\sigma}\Phi$, $d_{\tau}\Phi$ with respect to the vertex coordinates of σ^0 and τ^0 .

1: if INTERSECTION
$$
\sigma^0, \tau^0
$$
) then

```
2: RETURN(∞)
 3: \Phi \leftarrow 0 > energy approximation
  4: d_{\sigma} \Phi \leftarrow 0 \in \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3⊳derivative w.r.t. vertices of \sigma^05: d_{\tau} \Phi \leftarrow 0 \in \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3⊳derivative w.r.t. vertices of \tau^06: PUSH(S, (\sigma^0, \tau^0)))) ⊲initialize stack  with root node
 7: while !EMPTY(S) do
 8: (\sigma, \tau) \leftarrow \text{Pop}(S)9: if \max(\text{DIAM}(\sigma), \text{DIAM}(\tau)) < \theta \text{DIST}(\sigma, \tau) then
10: \Phi \leftarrow \Phi + \text{MipponrApproximation}(\sigma, \tau)11: d_{\sigma} \Phi \leftarrow d_{\sigma} \Phi + d_{\sigma}MIDPOINTAPPROXIMATION(\sigma, \tau).
     BARY(\sigma, \sigma_0)<br>d_{\tau} \Phi12: d_{\tau} \Phi \leftarrow d_{\tau} \Phi + d_{\tau} \text{MIDPOINTAPPROXIMATION}(\sigma, \tau).
     \text{BARY}(\tau, \tau_0)13: else
14: (\sigma_1, \sigma_2, \sigma_3, \sigma_4) \leftarrow \text{SubDivide}(\sigma)15: (\tau_1, \tau_2, \tau_3, \tau_4) \leftarrow \text{SUBDIVIDE}(\tau)16: for i = 1, ..., 4 do
17: for j = 1, ..., 4 do
18: PUSH(S, (\sigma_i, \tau_j))19: return (Φ, d<sub>σ</sub>Φ, d<sub>τ</sub>Φ)
```
B ENERGY DIFFERENTIAL

Here we give explicit expressions for the first-order derivatives of the discrete tangent-point energy. Derivatives for the discrete elastic energy can be found in [Heeren](#page-0-0) [\[2017,](#page-0-0) Section A.5]. Recall from Equation 15 that the kernel of the tangent-point energy is given by

$$
K(x, y, n) := \frac{|\langle n, x - y \rangle|^{\alpha}}{|x - y|^{2\alpha}}.
$$
 (1)

The partial derivatives of the kernel are given by

$$
d_{x}K(x, y, n) = \alpha \frac{|\langle n, x - y \rangle|^{\alpha - 1}}{|x - y|^{2\alpha}} n
$$

-
$$
2\alpha \frac{|\langle n, x - y \rangle|^{\alpha}}{|x - y|^{2\alpha + 2}} (x - y) \in \mathbb{R}^{3},
$$
 (2)

and

$$
d_n K(x, y, n) = \alpha \frac{|\langle n, x - y \rangle|^{\alpha - 1}}{|x - y|^{2\alpha}} (x - y) \in \mathbb{R}^3.
$$
 (4)

 (3)

To obtain the derivatives with respect to nodal positions, we employ the chain rule—yielding the derivative computation in Algorithm [3.](#page-0-1)

 $d_y K(x, y, n) = -d_x K(x, y, n) \in \mathbb{R}^3$

C PSEUDOCODE

In this appendix we give complete pseudocode for our adaptive multipole scheme on a pair of triangles. The only methods not defined explicitly are:

- AREA(σ)—returns area $\frac{1}{2}$ $|(x_2 x_1) \times (x_3 x_1)|$ of a triangle σ with vertices $x_1, x_2, x_3 \in \mathbb{R}^3$.
- CENTER(σ)—returns triangle center $\frac{1}{3}(x_1 + x_2 + x_3)$.
- NORMAL(σ)—returns unit vector parallel to $(x_2 x_1) \times (x_3$ x_1).
- DIAM(σ)—returns the maximum edge length of σ .
- INTERSECT(σ , τ)—returns true if and only if σ , τ intersect.
- DIST(σ , τ)—returns the distance between triangles σ , τ , *i.e.*, the length of the shortest segment between them.
- BARY($\tilde{\tau}$, τ)—returns for $\tilde{\tau} \subset \tau$ the barycentric coordinates of the vertices of $\tilde{\tau}$ with respect to the containing triangle τ as 3-by-3 matrix with columns corresponding to vertices of $\tilde{\tau}$

Algorithm 1 SUBDIVIDE(σ)

Input: A triangle σ given as a triples of points $x_1, x_2, x_3 \in \mathbb{R}^3$. **Output:** The four triangles obtained by cutting σ along the segments between its edge midpoints.

REFERENCES

Behrend Heeren. 2017. Numerical methods in shape spaces and optimal branching patterns. Ph. D. Dissertation. Universitäts-und Landesbibliothek Bonn.