
Repulsive Shells (Supplemental)
Algorithm 2MidpointApproximation(𝜎, 𝜏, 𝛼)
Input: A pair of non-intersecting triangles 𝜎, 𝜏 given as triples of

points in R3, and a power 𝛼 for the tangent-point energy.
Output: Approximation of the tangent-point energy Φ using mid-

point quadrature.
1: (𝑎𝜎 , 𝑎𝜏) ← (Area(𝜎),Area(𝜏))
2: (𝑐𝜎 , 𝑐𝜏) ← (Center(𝜎),Center(𝜏))
3: 𝑛𝜎 ← Normal(𝜎)
4: return 𝑎𝜎𝑎𝜏 |⟨𝑛𝜎 , 𝑐𝜎 − 𝑐𝜏 ⟩|𝛼/|𝑐𝜎 − 𝑐𝜏 |2𝛼

Algorithm 3 AdaptiveMultipole(𝜎0, 𝜏0, 𝛼, \)

Input: A pair of non-intersecting triangles 𝜎0, 𝜏0 given as triples of
points in R3, a power 𝛼 for the tangent-point energy, and
a parameter \ > 0 for the multipole acceptance criterion
(Equation 18).

Output: A multipole approximation of the tangent-point energy Φ,
and its first-order derivatives 𝑑𝜎Φ, 𝑑𝜏Φ with respect to the
vertex coordinates of 𝜎0 and 𝜏0.

1: if Intersect(𝜎0, 𝜏0) then
2: Return(∞)
3: Φ← 0 ⊲energy approximation
4: 𝑑𝜎Φ← 0 ∈ R3 × R3 × R3 ⊲derivative w.r.t. vertices of 𝜎0

5: 𝑑𝜏Φ← 0 ∈ R3 × R3 × R3 ⊲derivative w.r.t. vertices of 𝜏0

6: Push(𝑆, (𝜎0, 𝜏0)) ⊲initialize stack 𝑆 with root node
7: while !Empty(S) do
8: (𝜎, 𝜏) ← Pop(𝑆)
9: if max(Diam(𝜎),Diam(𝜏)) < \ Dist(𝜎, 𝜏) then
10: Φ← Φ +MidpointApproximation(𝜎, 𝜏)
11: 𝑑𝜎Φ ← 𝑑𝜎Φ + 𝑑𝜎MidpointApproximation(𝜎, 𝜏) ·

Bary(𝜎, 𝜎0)
12: 𝑑𝜏Φ ← 𝑑𝜏Φ + 𝑑𝜏MidpointApproximation(𝜎, 𝜏) ·

Bary(𝜏, 𝜏0)
13: else
14: (𝜎1, 𝜎2, 𝜎3, 𝜎4) ← Subdivide(𝜎)
15: (𝜏1, 𝜏2, 𝜏3, 𝜏4) ← Subdivide(𝜏)
16: for 𝑖 = 1, . . . , 4 do
17: for 𝑗 = 1, . . . , 4 do
18: Push(𝑆, (𝜎𝑖 , 𝜏 𝑗))
19: return (Φ, 𝑑𝜎Φ, 𝑑𝜏Φ)

B ENERGY DIFFERENTIAL
Here we give explicit expressions for the first-order derivatives
of the discrete tangent-point energy. Derivatives for the discrete
elastic energy can be found in Heeren [2017, Section A.5]. Recall
from Equation 15 that the kernel of the tangent-point energy is

given by

𝐾 (𝑥,𝑦, 𝑛) B |⟨𝑛, 𝑥 − 𝑦⟩|
𝛼

|𝑥 − 𝑦 |2𝛼
. (1)

The partial derivatives of the kernel are given by

d𝑥𝐾 (𝑥,𝑦, 𝑛) = 𝛼
|⟨𝑛, 𝑥 − 𝑦⟩|𝛼−1

|𝑥 − 𝑦 |2𝛼
𝑛

− 2𝛼 |⟨𝑛, 𝑥 − 𝑦⟩|
𝛼

|𝑥 − 𝑦 |2𝛼+2
(𝑥 − 𝑦) ∈ R3,

(2)

d𝑦𝐾 (𝑥,𝑦, 𝑛) = −d𝑥𝐾 (𝑥,𝑦, 𝑛) ∈ R3, (3)
and

d𝑛𝐾 (𝑥,𝑦, 𝑛) = 𝛼
|⟨𝑛, 𝑥 − 𝑦⟩|𝛼−1

|𝑥 − 𝑦 |2𝛼
(𝑥 − 𝑦) ∈ R3 . (4)

To obtain the derivatives with respect to nodal positions, we employ
the chain rule—yielding the derivative computation in Algorithm 3.

C PSEUDOCODE
In this appendix we give complete pseudocode for our adaptive
multipole scheme on a pair of triangles. The only methods not
defined explicitly are:
• Area(𝜎)—returns area 1

2 | (𝑥2 − 𝑥1) × (𝑥3 − 𝑥1) | of a triangle
𝜎 with vertices 𝑥1, 𝑥2, 𝑥3 ∈ R3.
• Center(𝜎)—returns triangle center 1

3 (𝑥1 + 𝑥2 + 𝑥3).
• Normal(𝜎)—returns unit vector parallel to (𝑥2 − 𝑥1) × (𝑥3 −
𝑥1).
• Diam(𝜎)—returns the maximum edge length of 𝜎 .
• Intersect(𝜎, 𝜏)—returns true if and only if 𝜎, 𝜏 intersect.
• Dist(𝜎, 𝜏)—returns the distance between triangles 𝜎, 𝜏 , i.e.,
the length of the shortest segment between them.
• Bary(𝜏, 𝜏)—returns for 𝜏 ⊂ 𝜏 the barycentric coordinates of
the vertices of 𝜏 with respect to the containing triangle 𝜏 as
3-by-3 matrix with columns corresponding to vertices of 𝜏

Algorithm 1 Subdivide(𝜎)

Input: A triangle 𝜎 given as a triples of points 𝑥1, 𝑥2, 𝑥3 ∈ R3.
Output: The four triangles obtained by cutting 𝜎 along the segments

between its edge midpoints.
1: (𝑥1, 𝑥2, 𝑥3) ← 𝜎 ⊲get the vertices
2: (m1,m2,m3) ← (𝑥1+𝑥2, 𝑥2+𝑥3, 𝑥3+𝑥1)/2 ⊲compute midpoints
3: 𝜎1 ← (𝑥1,m1,m3)
4: 𝜎2 ← (𝑥2,m2,m1)
5: 𝜎3 ← (𝑥3,m3,m2)
6: 𝜎4 ← (m1,m2,m3)
7: return (𝜎1, 𝜎2, 𝜎3, 𝜎4)

REFERENCES
Behrend Heeren. 2017. Numerical methods in shape spaces and optimal branching

patterns. Ph. D. Dissertation. Universitäts-und Landesbibliothek Bonn.

1

	B Energy Differential
	C Pseudocode
	References

