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Abstract

Geometric optimization problems are at the core of many applications in geometry processing. The choice of a repre-
sentation fitting an optimization problem can considerably simplify solving the problem. We consider the Nonlinear
Rotation-Invariant Coordinates (NRIC) that represent the nodal positions of a discrete triangular surface with fixed
combinatorics as a vector that stacks all edge lengths and dihedral angles of the mesh. It is known that this representa-
tion associates a unique vector to an equivalence class of nodal positions that differ by a rigid body motion. Moreover,
integrability conditions that ensure the existence of nodal positions that match a given vector of edge lengths and
dihedral angles have been established. The goal of this paper is to develop the machinery needed to use the NRIC for
solving geometric optimization problems. First, we use the integrability conditions to derive an implicit description
of the space of discrete surfaces as a submanifold of an Euclidean space and a corresponding description of its tangent
spaces. Secondly, we reformulate the integrability conditions using quaternions and provide explicit formulas for their
first and second derivatives facilitating the use of Hessians in NRIC-based optimization problems. Lastly, we intro-
duce a fast and robust algorithm that reconstructs nodal positions from almost integrable NRIC. We demonstrate the
benefits of this approach on a collection of geometric optimization problems. Comparisons to alternative approaches
indicate that NRIC-based optimization is particularly effective for problems involving near-isometric deformations.
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1. Introduction

Geometric optimization problems are central to geometry processing as most methods involve some form of
optimization as a step in their pipeline. Shape deformation problems are inherently nonlinear and therefore can be
difficult to solve. In particular, problems involving near-isometric deformations are typically ill-conditioned due to
the combination of high stretching and low bending resistance. Moreover, physical objectives are often invariant with
respect to rigid body motions and the alignment of a mesh in Euclidean space is considered to be a post-processing
task. However, this rigid body motion invariance can cause conceptual and numerical issues when working with nodal
positions. Thus it is beneficial to find degrees of freedom for mesh description and corresponding deformations which
are rigid body motion invariant.

In this work, we study the Nonlinear Rotation-Invariant Coordinates (NRIC) that describe the immersion of a
mesh using the edge lengths and dihedral angles of the mesh instead of the nodal positions. Beyond their inherent
invariance to rigid transformations, these coordinates offer additional benefits, such as their natural occurrence in
discrete deformation energies and their representation of natural modes of deformation in a localized sparse fashion.
For example, when a human character (represented by a triangle mesh) lifts her straight arm, the induced variations in
nodal positions comprise the entire arm. However, the same variation encoded in the change of lengths and angles is
limited to the shoulder region, i.e. the place where the actual physical work is done.
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Prior work on shape interpolation by Winkler et al. [1] and Fröhlich and Botsch [2] showed that linear blending
of the NRIC for a set of shapes already yields interesting nonlinear deformations. However, since in general nodal
positions that realize given edge lengths and dihedral angles may not exist, these methods rely on optimization in the
space of nodal positions.

Contribution. The basis of our approach is the triangle inequalities and the integrability conditions derived by Wang
et al. [3]. Our goal is to provide the machinery required to formulate and solve geometric optimization problems
entirely in NRIC.

• We reformulate the integrability conditions using quaternions and use this to provide an implicit description of
the NRIC manifold along with its tangent spaces.

• We reformulate the nonlinear energy from [4] in NRIC and provide its derivatives to equip the NRIC manifold
with a Riemannian metric.

• For solving (constrained) geometric optimization problems in the NRIC manifold, we describe an approach
based on the augmented Lagrange method. In this context, we illustrate how to efficiently handle the triangle
inequality constraints using the natural barrier term in the nonlinear energy and a modified line search. This
also includes explicit formulas for the second derivatives of the integrability conditions, which are needed for
evaluating the Hessian of objectives acting on NRIC.

• Finally, we introduce a hybrid algorithm to construct nodal positions of a discrete surface from NRIC which
do not necessarily fulfill the integrability conditions. The algorithm uses an adaptive mesh traversal algorithm
as initialization to a Gauß–Newton solver. In our experiments, this proves to effectively reduce the number of
required Gauß–Newton iterations. Typically, a single iteration is sufficient or even no iteration is needed.

Experiments demonstrate the utility of our framework for various applications such as geodesics in shape space and
paper folding. Our approach is particularly well-suited to deal with near isometric deformations of discrete shell
surfaces, which is underpinned by a variety of numerical examples.

Organization. The remainder of this paper is organized as follows. After reviewing related work in Section 2, we
summarize the necessary background on the established discrete integrability conditions as introduced by Wang et al.
[3] in Section 3. We define our NRIC manifold and reformulate the integrability conditions using quaternions in
Section 4. In Section 5, we discuss the nonlinear deformation energy. Afterwards, we introduce a corresponding
variational calculus in Section 6. The robust reconstruction of nodal positions from lengths and angles is discussed in
Section 7. Finally, we show a series of applications in Section 8 and discuss limitations and challenges in Section 9.

2. Related Work

In this section, we discuss relevant work on linear and nonlinear coordinates, rigidity of triangle meshes, shape
interpolation, shape spaces and near-isometric deformation.

Linear coordinates. For solving problems in geometry processing, it can be useful to switch from the usual nodal
coordinates to a different representation that is adapted to the given task. We distinguish between coordinates that de-
pend linearly and nonlinearly on the nodal coordinates. Differential coordinates use discrete differential operators on
a triangle mesh to define coordinates. Two examples are gradient-domain approaches for meshes [5, 6], which operate
on the gradients of functions, and the Laplace coordinates [7, 8], which make use of the discrete Laplace–Beltrami
operator. Since the differential coordinates depend linearly on the nodal positions, the immersion that best matches
given differential coordinates can be found by solving a linear least-squares problem. While linearity of the coordi-
nates facilitates computations, it also fundamentally limits their applicability. For example, shape editing approaches
that use linear coordinates often yield unnatural and distorted shapes when larger deformations are involved [9].
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Nonlinear coordinates. In classical differential geometry, the fundamental theorem of surfaces [10] states that two
immersion of a surface to R3 differ by a rigid motion if and only if the first and second fundamental forms agree and
provides integrability conditions that guarantee the existence of an immersion for a given first and second fundamental
form. This motivates using discrete analogs to the fundamental forms as coordinates for triangle mesh processing.
Explicitly, the list of all edges lengths and dihedral angles is used. Analogous to the classical theorem, the nodal
positions of two meshes with the same combinatorics agree up to a global rigid motion if and only if all edge lengths
and all dihedral angles agree. Integrability conditions that guarantee the existence of nodal positions realizing a given
vector of edge lengths and dihedral angles were derived by Wang et al. [3]. The integrability conditions are formulated
using moving frames associated with the triangles of the mesh. Already in earlier work, Lipman et al. [11, 12] used
moving frames to define coordinates on triangle meshes. Our goal is to extend this line of work by providing the tools
and structures needed for solving optimization problems that are formulated in the nonlinear coordinates.

Rigidity. While the existence and uniqueness results for the nonlinear coordinates require both, the edge lengths and
the dihedral angles, rigidity results can already be obtained if only edge lengths are considered. For convex polytopes,
Cauchy’s and Dehn’s rigidity theorems [13] show rigidity and infinitesimal rigidity and Gluck [14] showed that almost
all simply-connected polyhedra are rigid. An example of polyhedra that allow for isometric continuous deformations,
which are non-rigid, is Cornelly’s sphere [15]. In this paper, we will formulate infinitesimal rigidity in terms of NRIC.
In recent work, Amenta and Rojas [16] studied the dihedral rigidity of polyhedra and parametrized triangle meshes
via dihedral angles. Related to rigidity is the problem of computing an immersion from prescribed edge lengths.
Algorithms for this problem were proposed by Boscaini et al. [17] and Chern et al. [18]. Relaxing the concept of
rigidity, conformal geometry identifies metrics that differ only by a conformal factor. Crane et al. [19] study the
numerical treatment of the integrability conditions for surfaces in this setting.

Near-isometric deformations. Isometric and near-isometric deformations are important for computational folding of
piecewise flat or developable structures [20, 21, 22, 23]. The computation of near-isometric deformation can be done
by simulating elastic shells consisting of stiff material with low bending resistance [24, 25, 26]. These materials
yield ill-conditioned problems that are difficult to solve numerically. The NRIC perspective improves the numerical
accessibility of such problems.

Shape interpolation. Shape interpolation, also called blending or morphing, is an important problem in geometry
processing which is used for applications such as deformation transfer [27, 28], motion processing [29], example-
based methods for shape editing [2], inverse kinematics [6, 30], and material design [31]. Approaches to shape
interpolation based on linear coordinates use non-linear operations for blending the coordinates. For example, the
gradient-domain approach of Xu et al. [32] extracts the rotational components from deformation gradients via polar
decomposition and applies nonlinear blending operations to these components. While the nonlinear blending helps to
compensate for linearization artifacts, it is a difficult task to estimate the local rotations that resolve large deformations.
Kircher and Garland [33] and Gao et al. [34] introduce improved nonlinear blending operations for the rotational
components. Winkler et al. [1] introduce a scheme for shape interpolation using nonlinear coordinates. Their method
linearly blends edge lengths and dihedral angles and uses a multi-scale shape matching algorithm for constructing
interpolating shapes. Fröhlich and Botsch [2] model the process of finding the shape that best matches the blended
lengths and angles as a nonlinear least-squares optimization problem and solve it using a multi-resolution Gauß–
Newton scheme. A related approach by Wuhrer et al. [35] blends edge lengths and the normal vectors of two example
shapes and constructs the intermediate shapes using a mesh traversal algorithm based on a minimal spanning tree with
dihedral angle differences as weights. Model reduction approaches that enable real-time shape interpolation have
been introduced by von Tycowicz et al. [36] and von Radziewsky et al. [37]. Related to shape interpolation are shape
spaces, which are shape manifolds equipped with a Riemannian metric. Shape spaces are used for various applications
in computer vision, computational anatomy, and medical imaging. For a general introduction to shape space and their
applications, we refer to the textbook of Younes [38]. Kilian et al. [39] introduced a Riemannian metric on spaces of
triangle meshes and show that concepts from Riemannian geometry such as the exponential map and parallel transport
can be used for geometry processing tasks like deformation transfer, shape interpolation, and extrapolation. Heeren
et al. [40, 4] propose an alternative physically-based metric on the shape space of triangle meshes that reflects the
viscous dissipation required to physically deform a thin shell. Brandt et al. [41] derive a discrete curve shortening flow
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in shape space and use it for processing animations of deformable objects. While the shape spaces study deformations
of meshes with fixed connectivity, functional correspondences [42] can be used to blend [43] and analyze [44] pairs of
meshes with different connectivity. In recent work, the functional correspondences of intrinsic and extrinsic geometry
[45] and deformation fields [46] have been studied.

3. Background

In this section, we briefly review the work by Wang et al. [3] who introduced a discrete version of the fundamental
theorem of surfaces. We consider a simplicial surface, which is a simplicial complex K = (V,E,F ) consisting of
sets of vertices V, edges E ⊂ V × V and faces F ⊂ V × V × V such that the topological space |K| obtained by
identifying each face with a standard two-simplex and gluing the faces along the common edges is a two-dimensional
manifold. A map X : V → R3 is called generic if for every face, the three vertices are in general position, i.e., there
is no straight line in R3 containing the three vertices. We define

N := {X(V) | X : V → R3 generic } ⊂ R3|V| , (1)

which we denote the space of discrete surfaces. For any X, there is a unique map X∗ : |K| → R3 that is continuous,
an affine map of each simplex, and interpolates X at the vertices. X∗ maps the faces of |K| to triangles in R3, and, if
X∗ corresponds to a generic map X, none of the triangles degenerates. We will need this property to ensure that the
elastic energies we consider in Section 5 are well-defined.
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R50

R01
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Figure 1: Construction of integrability condition for the 6-
loop of faces around a vertex. Specifically, the transition rota-
tion R50 = R0(θ5)R2(γ0) (orange) is constructed from the dihe-
dral angle θ5 and interior angle γ0 (both black). It transforms the
frame F5 into frame F0 (both blue, normal vector not shown), i.e.
F0 = F5R50. The other transition rotations are constructed in the
same way and applying them sequentially yields the integrability

condition R01R12R23R34R45R50
!
= Id.

Since we assume that the underlying simplicial com-
plex remains unchanged, by abuse of notation, we will
often refer to the image X(V) of the generic map sim-
ply as X. For a discrete surface X ∈ N , we denote
by l(X) = (le(X))e∈E its vector of edge lengths and by
θ(X) = (θe(X))e∈E its vector of dihedral angles. Wang et
al. studied necessary and sufficient conditions that an ar-
bitrary tuple (l, θ) ∈ R2|E| is induced by a discrete surface.
The first necessary condition is the triangle inequality, i.e.

T f (l) > 0 for all f ∈ F , (T)

where T f (l) =
(
li + l j − lk li − l j + lk −li + l j + lk

)
for

a face f ∈ F with edge lengths li, l j, lk and the above
inequality is to be understood componentwise. Thus, by
combining the maps for all faces and extending constantly
to dihedral angles we obtain a linear map T : R2|E| → R3|F |

and we see that (T) defines an open convex polytope in
R2|E|. The next set of conditions is referred to as discrete
integrability conditions. They ensure that we can integrate
the local change of geometry induced by the lengths and
angles to reconstruct the immersed discrete surface. In
other words, the immersion is invariant with respect to the
start and order of the reconstruction. For a face f ∈ F
with (immersed) edges E1, E2, E3 ∈ R3, one defines the
standard discrete frame F f as the orthogonal matrix with
rows E1

∥E1∥
, E1×N f

∥E1×N f ∥
, and N f , where N f ∈ S 2 is the unit face normal. The normal component requires our discrete

surfaces to be globally orientable which we will assume in the following. Then the transition between frames F j and
Fi of adjacent faces fi, f j ∈ F and a common edge e ∈ E can be described by a rotation matrix Ri j with F j = FiRi j.
This rotation decomposes into three elementary rotations, i.e.

Ri j = R2(γe,i)R0(−θe)R2(γ j,e), (2)
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where Rk(φ) ∈ SO(3) denotes a rotation around the kth standard basis vector in R3 by φ ∈ [0, 2π] and γe, j and γi,e

denote the angles between the common edge and the first vector of Fi resp. F j. In particular, the transition rotations are
completely determined by the lengths and angles using the law of cosines. Now letV0 ⊂ V be the index set of interior
vertices. Then for each v ∈ V0, which is the center of a nv-loop of faces f0, . . . , fnv−1 and edges e0, . . . , env−1 connected
to v, we obtain a closing condition. To this end, one chooses the frames F0, . . . , Fnv−1 such that ei always coincides
with the first basis vector in Fi. Consequently, the corresponding transition rotations simplify to Ri j = R0(θi)R2(γ j),
where γ j is the interior angle at v in f j with j = i + 1 modulo nv and θi is the dihedral angle at ei. Applying the
transition property F j = FiRi j sequentially along the loop, the identity F0 = F0

∏nv−1
i=0 Ri,(i+1) mod nv must hold for

immersed discrete surfaces. This can be phrased as the integrability condition

Iv(l, θ) B
nv−1∏
i=0

Ri,(i+1) mod nv

!
= Id (I)

for the nv-loop of faces around all interior vertices v ∈ V0. Note that the transition rotations in (I) in fact depend on
(l, θ).

Wang et al. [3] proved that the necessary conditions (T) and (I) are indeed sufficient (for simply connected sur-
faces). In detail, their discrete fundamental theorem of surfaces reads: If (l, θ) ∈ R2|E| satisfies (T) and (I), there exists
X ∈ N (unique up to rigid body motions) such that l(X) = l and θ(X) = θ. They also extended this to non-simply
connected surfaces but to simplify the exposition, we restrict ourselves to the simply connected case.

4. The NRIC manifold of edge lengths and dihedral angles

In this section, we consider the Nonlinear and Rotation-Invariant Coordinates (NRIC) given as a vector z =
(le, θe)e∈E ∈ R2|E| that lists all the edge lengths and dihedral angles of a discrete surface. Using the integrability
conditions, we describe the manifold of discrete surfaces as a submanifold of R2|E| and derive a scheme for computing
its tangent spaces.

NRIC manifold. We consider the map

Z : N → R|E| × R|E| , X 7→ (l(X), θ(X)) (3)

that associates to any discrete surface the vector stacking its edge length and dihedral angles The image of (3) describes
the submanifold

M := Z(N) = {z ∈ R2|E| | ∃X ∈ N : Z(X) = z}. (4)

of R2|E| that we call the NRIC manifold.

Implicit description. In the following, we will use the conditions (I) and (T) to derive an implicit description ofM.
Directly using condition (I) leads to nine scalar constraints per vertex, which is a redundant description since SO(3)
is a three-dimensional manifold. Instead, we will introduce a reformulation using unit quaternions as an equivalent
representation of spatial rotations.

To this end, let us first briefly recall the necessary basics of quaternions and their relation to spatial rotation such
that this section is self-contained, for a detailed treatment we refer to standard textbooks such as [47]. Quaternions
can be understood as an extension of the complex numbers and are generally represented as q = a + bi + c j + dk,
where a, b, c, d ∈ R and i, j, k are the so-called quaternion units. These units fulfill the fundamental identity i2 = j2 =
k2 = i jk = −1, from which the general multiplication of quaternions can be defined via distributive and associative
law and thus quaternions form a noncommutative division ring H. In this context, a is called the real part of q and
b, c, and d the vector part, for which we also write vec(q) = (b, c, d) ∈ R3. Unit quaternions are those for which the
product with their conjugate q̄ B a − bi − c j − dk is one, i.e. qq̄ = a2 + b2 + c2 + d2 = 1. Points in three-dimensional
space p ∈ R3 can be identified with quaternions having vanishing real part, i.e. we write p = p1i + p2 j + p3 k. Now,
given a rotation Q around the unit vector u ∈ R3 by angle φ ∈ [0, 2π) we can define a corresponding unit quaternion

q(u, φ) B cos
φ

2
+ (u1i + u2 j + u3 k) sin

φ

2
.
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Then one can verify that for any p ∈ R3, the conjugation qpq−1 with q results in the rotated point Qp. The quaternion
−q(u, φ) would lead to the same rotation, thus the quaternions form a double covering of SO(3). Furthermore, investi-
gating this conjugation one realizes that the composition of two rotations given as unit quaternions q1, q2 ∈ H is given
by their product q1q2 and hence this correspondence is a homomorphism between SO(3) and the unit quaternions.

Turning to the reformulation of the integrability conditions (I), recall that we needed rotations around the 0th and
2nd basis vector in R3 for which we now introduce the corresponding quaternions

q0(φ) B cos
φ

2
+ i sin

φ

2
, q2(φ) B cos

φ

2
+ k sin

φ

2
for φ ∈ [0, 2π). (5)

Then we identify the simplified transition rotation Ri j = R0(θi)R2(γ j) from before with the quaternion

qi j B q0(θi) q2(γ j), (6)

where again f0, . . . , fnv−1 and e0, . . . , env−1 are the nv-loops of faces resp. edges connected to v, γ j is the interior angle
at v in f j with j = i + 1 modulo nv, and θi is the dihedral angle at ei. To finally reformulate the condition (I), we need
to deal with the ambiguity introduced by the double covering, i.e. that the identity rotation is represented by q = ±1.
However, we see that in both cases the vector part vec(q) ∈ R3 is zero, which is indeed for unit quaternions already a
sufficient condition to be plus or minus one. Then we use this alternative characterization of the identity rotation to
formulate the quaternion integrability conditions as

Qv(l, θ) B vec

nv−1∏
i=0

qi,(i+1) mod nv

 !
= 0 (Iq)

for the nv-loop of faces around all interior vertices v ∈ V0.
Now, we can rewrite the manifold defined in (4) as

M =
{
z ∈ R2|E|

∣∣∣T (z) > 0, Q(z) = 0
}
. (7)

Here we have collected all constraints in a vector-valued functional Q : R2|E| → R3|V0 | with Q = (Qv)v∈V0 . Obviously,
Qv depends solely on the edge lengths of the adjacent faces of v and the dihedral angles at edges centered at v. Given
z ∈ R2|E| with Q(z) = 0 one can easily reconstruct vertex coordinates X ∈ N with Z(X) = z. For a robust and stable
reconstruction for Q(z) , 0, we refer to Section 7.

Tangent space. The implicit formulation (7) consists of the triangle inequalities defining an open convex polytope and
of the nonlinear integrability conditions, which define a lower-dimensional, differential structure on M. Therefore,
we can derive an implicit description of its tangent space solely based on Q. In detail, for z ∈ M the tangent space is
given by

TzM = ker DQ(z) B {w ∈ R2|E| |DQ(z)w = 0} ,

where DQ(z) is a matrix in R3|V0 |,2|E|. Partial derivatives of Qv are given by the chain rule as

∂zkQv(z) = vec

nv−1∑
i=0

q01(z) . . . ∂zk qi,i+1(z) . . . qnv−1,0(z)

 , (8)

where the partial derivatives of a quaternion-valued map are to be understood componentwise as for vector-valued
maps. The gradient of Qv can be computed with O(nv) cost and is sparse. It has only O(nv) non vanishing entries, i.e.
∂θeQv ≡ 0 if v is not a vertex of the edge e and ∂leQv ≡ 0 if the edge e is not an edge of a triangle with vertex v. We
provide details on the gradient computation as well as an implementation in terms of a MATHEMATICA notebook in
the supplementary material.

To illustrate the NRIC manifold and its tangent spaces, we will for the remainder of the section discuss an im-
mediate application. With the tangent space at hand, one can verify the infinitesimal rigidity of a discrete surface

6



Figure 2: The tangent space reveals an infinitesimal isometric variation at the classical Steffen’s polyhedron (middle). Indeed, extrapolating in this
positive (left) resp. negative (right) direction (solely in the θ component) allows for isometric deformations. The extrapolation is implemented via
an incremental addition of the infinitesimal isometric variation coupled with a back projection ontoM. See also video in supplementary material
for an animation.

with NRIC z ∈ M. In fact, a necessary condition for the existence of continuous one-parameter families of isometric
deformations starting at z is the existence of an infinitesimal isometric variation w ∈ TzM with Plw = 0 and w , 0,
where Pl is the projection onto the length component, i.e. Pl(l, θ) = l, see for example Figure 2. Note, however, that
this is surely not a sufficient condition, which we can also observe in Figure 3. Thus, we simply verify if the kernel of
DQ(z) has a non-trivial intersection with the θ subspace of R2|E|, namely the kernel ker Pl. This intersection is given by
ker

(
BTzM Bθ

)
, where BTzM is a matrix whose columns form a orthonormal basis of TzM and Bθ is the canonical

basis of ker Pl. We compute a singular value decomposition (SVD) of this matrix and evaluate the smallest singular
value λ0. If λ0 = 0, then there exists an infinitesimal isometric variation. Otherwise, the singular value provides a
quantitative measure for the lack of such an infinitesimal isometric variation. In Figure 3, we show that the Origami
cylinder considered by Bös et al. [21] does not allow for an isometric deformation path which leads to a compression
by folding. Indeed, the only nontrivial infinitesimal isometric variation is indicated by arrows (top, right). However,
there is no nontrivial family of isometric deformation with this shape as the initial shape. As discussed by Bös et al.
[21] the experimental paper deformation (top, left) is not isometric. This is reflected by our criteria for infinitesimal
isometric variations when we additionally enforce the dihedral angles on the upper and lower plate to remain constant
which leads to λ0 = 0.015 clearly indicating the nonexistence of such a variation.

5. Nonlinear energy and geometry of the NRIC manifold

So far, we have introduced a differential structure on M. Going forward, it will be essential to additionally
consider an elastic deformation energy W between different NRIC as it provides a dissimilarity measure on M.
Although different choices forW are possible, we will primarily focus on the hyperelastic deformation energy from
Heeren et al. [4]. To this end, we reformulate this energy in NRIC to define a physically-motivated Hessian structure
on M. This will be a straightforward undertaking which underlines our claim that NRIC are a natural choice for
computing deformations. In particular, we will see that the local injectivity constraints inbuilt in this energy allow us
to replace the triangle inequalities and thus reduce the number of constraints. For comparison reasons, we will finally
consider a simple quadratic deformation energy as it has been used in [2].

Based on models from mathematical physics, the hyperelastic energy used in [4] consists of two separate contri-
butions, i.e.

W =Wmem + δ
2Wbend. (9)

From a physical point of view, the first term Wmem will measure the stretching of edges and triangles, i.e. local
membrane distortions. Likewise, the second term Wbend will measure the difference in bending between triangles,
i.e. local bending distortions. In particular, the global weight δ represents the thickness of a thin elastic material
represented by the discrete surface.

In the following, we will investigate separately how the membrane and bending energy introduced in [4] can be
reformulated in NRIC. Note that the membrane energy has originally been proposed in [40] whereas the bending
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θ∗= 0.75 · θ̄ reference θ∗= 1.1 · θ̄ θ∗= 1.2 · θ̄

Figure 3: Top: Almost isometric compression of an Origami cylinder as depicted in Bös et al. [21] (left, with permission) along with the only
infinitesimal isometric variation (right, indicated by arrows). Bottom: Optimizing (15) on NRIC manifold with δ=0 and hard constraints on target
angles θ∗ along the upper horizontal edges (relative to the reference angle θ̄ = 2.257) leads to non-isometric deformations with as small as possible
edge length distortion (from left to right 4%, 0.3%, and 0.4% average change of edge length). See also supplementary video.

energy has been taken from [48].

Membrane energy. Let X ∈ N be a discrete surface and X∗ : |K| → R3 the corresponding continuous, piecewise
linear map that interpolates the vertices. The derivative of X∗ is constant over each triangle, and, since X is a generic
map, the derivative has full rank. This implies that X∗ induces a metric G (also called first fundamental form) on |K|.
This metric is defined in the interior of the faces and along the edges. It enables measuring the length of arbitrary
curves in |K| and makes |K| a metric space. Two discrete surfaces, X and X̃, induce two different metrics, G and G̃,
on |K|. The metric distortion tensor G[X, X̃] is defined as the symmetric tensor that at any point in the interior of a
triangle satisfies

G(G[X, X̃]v,w) = G̃(v,w)

for any pair v,w of tangential vectors. The membrane energy evaluates the trace and the determinant of G[X, X̃].
For our purpose, it is essential to be able to evaluate the distortion tensor for discrete surfaces

v2

v3

v1

e3e1

e2

b1

b2

0.5

1.0

0.5 1.0

given by their NRIC z and z̃ directly without having to reconstruct vertex positions first.
In the following, we derive an explicit formula for G[z, z̃]. For discrete surfaces, the
metric and the distortion tensor are constant for every triangle. Consider an arbitrary
triangle f in R3. We parametrize f with an affine map ϕ : t → f , where t is the right
angled triangle in R2 shown in the inset figure. The standard basis b1, b2 of R2 agrees
with second edge and the negative of the first edge of t. Then dϕ(b1) = E2( f ) and
dϕ(b2) = −E1( f ), where E1( f ), E2( f ) denote the edge vectors of f . Thus, the metric on
t induced by ϕ is

G| f =
(
∥ dϕ(b1)∥2 ⟨ dϕ(b2), dϕ(b1)⟩

⟨ dϕ(b2), dϕ(b1)⟩ ∥ dϕ(b2)∥2

)
=

(
∥E2( f )∥2 −⟨E1( f ), E2( f )⟩

−⟨E1( f ), E2( f )⟩ ∥E1( f )∥2

)
, (10)

The entries of the metric can be expressed in terms of the length of the edges of f . The diagonal entries are the
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squared length of the second and the first edge. The off-diagonal entries are given by scalar products of edge vectors
and from linear algebra we recall that for two vectors v,w ∈ R3 we have ⟨v,w⟩ = ∥v∥ ∥w∥ cos(γ), where γ is the
angle between v and w. In our case, this is the interior angle of a triangle which can be computed from its edge
lengths by the law of cosines. For two NRIC z and z̃, we can use the formula to compute the metrics G| f and G̃| f for
every f . Then, the distortion tensor is given as G[X, X̃]| f := (G| f )−1G̃| f . We want to note that the resulting distortion
tensor depends on the chosen domain and parametrization. However, we consider isotropic materials for which the
membrane energy depends only on the trace and determinant of the distortion tensor. Since the determinant and the
trace are invariant under coordinate transformations, we obtain the same results independently of the chosen domain
and parametrization. Similarly the roles of the edges could be exchanged, for example, one could consider the second
and third edge. This would alter the parametrization and therefore yield a different distortion tensor. Still, the relevant
quantities, the determinant and the trace of G, would be the same.

Having established that the distortion tensor is completely given by the NRIC of discrete surfaces, we can now
adapt the membrane energy from [40] applying a nonlinear energy density to it, which has a global minimum at the
identity.

Definition 1 (Membrane energy). For a simplicial surfaceK , we define the membrane energy on NRIC z, z̃ ∈ R2|E| as

Wmem[z, z̃] =
∑
f∈F

a f ·Wmem(G[z, z̃]| f ), (11)

where
Wmem(A) :=

µ

2
tr A +

λ

4
det A −

(
µ +
λ

2

)
log det A − µ −

λ

4
,

for positive material constants µ and λ and a f is the area of f computed from edge lengths by Heron’s formula.

For more explicit formulas of the energy in terms of edge lengths we refer to the appendix and for the energy’s
derivatives to the supplementary material.

Bending energy. Next, we adapt the Discrete Shells bending energy [48] also used in [4]. One directly sees that
expressing this energy in lengths and angles requires no further calculations, and as before we replace its primary
variables by NRIC.

Definition 2 (Discrete Shells bending energy). For a simplicial surface K , we define the Discrete Shells bending
energy on NRIC z, z̃ ∈ R2|E| as

Wbend[z, z̃] =
∑
e∈E

(θe − θ̃e)2

de
l2e , (12)

where de =
1
3 (a f + a f ′ ) for the two faces f and f ′ adjacent to e ∈ E, as before computed by Heron’s formula.

Finally, we combine the membrane and bending energy in a weighted sum.

Definition 3 (Nonlinear deformation energy). Let K be a simplicial surface and let z, z̃ ∈ R2|E| be two NRIC. The
nonlinear deformation energy is defined by

Wnl[z, z̃] =Wmem[z, z̃] + δ2Wbend[z, z̃], (13)

whereWmem is the membrane energy from Definition 1,Wbend is the bending energy from Definition 2, and δ represents
the thickness of the material.

Relationship with triangle inequalities. One essential property of the membrane energy is that it allows us to control
local injectivity via the built-in penalization of volume shrinkage, i.e. we have Wmem(G[z, z̃]| f ) → ∞ for ã f → 0.
To see this, we recognize that detG[z, z̃]| f = (det G| f )−1 det G̃| f = a−2

f ã2
f and hence − log detG[z, z̃]| f → ∞ when

ã f goes to zero. This control over the local injectivity also has consequences for the consideration of the triangle
inequalities. Because of it, we also have that the energy diverges, i.e. Wmem(G[z, z̃]| f ) → ∞ if one of the components
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of T f (l) approaches zero meaning that we get close to violating one of the triangle inequalities. Especially, we set
Wmem(G[z, z̃]| f ) = ∞ if T f (l) > 0 does not hold. This allows us to characterize the NRIC manifoldM by

M =
{
z ∈ R2|E|

∣∣∣Wnl[z∗, z] < ∞ for a fixed z∗ ∈ M, Q(z) = 0
}
, (14)

avoiding the explicit dependence on the triangle inequalities (T) we had before. Note, however, that the integrability
conditions (Iq) are still necessary as finite energy does not guarantee their attainment. The characterization (14) will
be helpful later on to devise efficient numerical schemes for solving variational problems onM.

Quadratic model. Previously, Fröhlich and Botsch [2] used a quadratic deformation model for NRIC, i.e. they con-
sidered the weighted quadratic energy

Wq[z, z∗] =
∑
e∈E

αe∥le − l∗e∥
2 + δ2

∑
e∈E

βe∥θe − θ
∗
e∥

2 . (15)

In fact, almost the same model has been used in [48] to define the Discrete Shells energy for physical simulations
based on nodal positions. The weights α = (αe)e and β = (βe)e can be chosen in different ways. Typically, they are
computed from edge lengths le = le(z̄) and areas de = de(z̄) associated with edges and defined on some representative
reference configuration z̄ ∈ R2|E|. For example, the authors in [48, 2] set in a related context αe = l−2

e and βe = l2e d−1
e ,

whereas Heeren et al. [49] have chosen αe = del−2
e , for e ∈ E. Here the (physical) parameter δ2 > 0 trades the impact

on length variations off against angle variations and can be considered as the squared thickness of the material as
before. This quadratic energy has no inbuilt control over the local injectivity of the deformation and hence does not
allow a characterization without explicit dependence on the triangle inequalities as in (14). We found that in many of
our examples this decreased the numerical accessibility and increased the needed number of iterations and runtimes.
Nevertheless, as demonstrated by Fröhlich and Botsch [2], it often leads to natural-looking deformations and we will
consider it in some of our examples.

Riemannian metric. For each z ∈ M, a Riemannian metric gz is a symmetric, positive definite quadratic form on the
tangent space TzM measuring the cost of an infinitesimal variation in tangential direction. In our context a tangential
vector w ∈ TzM splits into two components w = (wl,wθ), where wl is the variation of edge lengths and wθ the
variation of dihedral angles. Following Rayleigh’s paradigm, 1

2 times the Hessian of an elastic deformation energy
can be considered as a Riemannian metric on the space of discrete surfaces if it is positive definite. Precisely, we
obtain the metric for tangent vectors v,w ∈ R2|E| via

gz(v,w) = vT
(

1
2

HessW[z, z]
)

w . (16)

As investigated in [4], this is true for the energy defined in (13) with the choice of membrane and bending energies
made above. Furthermore, it holds for the quadratic energy (15) if we choose all weights to be positive. With the
metric at hand, one can define the Riemannian distance onM and compute for instance shortest geodesic curves, cf .
Section 8.

6. Variational problems on the manifold

The quest for geometrically optimal, discrete surfaces often leads to variational problems. However, in many
applications, the corresponding objective functional can naturally be formulated in our coordinates, thus on the NRIC
manifold (7), and its first and second variation can be computed easily. To this end, one aims at solving a constrained
optimization problem, i.e. given an objective functional E : R2|E| → R the task is to

minimize
z ∈R2|E|

E(z)

subject to Qv(z) = 0 for each v ∈ V0,

T f (z) > 0 for each f ∈ F .

(OPT)
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Due to non-convexity of the objective, in general, there is no guarantee for a unique, global minimizer for the opti-
mization problem.

Figure 4: Left: Unit sphere (grey) with black constraint curves to be shortened by means of equality constraints on edge lengths along with different
results for varying bending parameter δ2 = 10−{0,2,4} in the nonlinear objective (13). Right: Same experiment but with (orange) constraint areas
where the target edge lengths were increased by 30% to simulate a brushing tool.

A simple example of an objective functional E is given by the dissimilarity to some given z∗ on the linear space
R2|E| measured by the deformation energy, i.e. E(z) =W[z∗, z], whereW is an elastic deformation energy as discussed
in the previous section. For example, in Figure 4 we have used the nonlinear energy defined in (13) along with
coordinate constraints on a certain subset of edge lengths to simulate a “constriction” of a sphere along curves or
creating cartoon-like characters by inflating for instance hands and feet (cf . [50]).

Ensuring triangle inequalities. One crucial problem we encounter when we try to solve (OPT) are the triangle in-
equalities which lead to 3|F | inequality constraints causing the problem to be computationally expensive. Therefore,
we aim for an approach to deal with them efficiently rooted in our geometric setup from Section 4 and Section 5. We
achieve this by a modified line search. First, recall that the setZT =

{
z ∈ R2|E| | T (z) > 0

}
defines an open connected

subset of R2|E|. Therefore, if we start with an initial point z0 fulfilling the triangle inequalities we only have to ensure
that every iterate remains in the set. Hence, in a line search method where we search for a new iterate zk+1 along a
direction dk we have to restrict this search to ZT . We accomplish this using backtracking, i.e. reducing the stepsize
βk until zk+1 = zk + βkdk ∈ ZT holds. In implementations, this can easily achieved by setting Qv(z) = ∞ if T f (z) ≯ 0
for any face f adjacent to v ∈ V0.

We can obtain an even more natural approach when we work with the nonlinear membrane energyWmem. Recall
that in Section 5 we introduced the characterization (14) ofM without explicit dependence on the triangle inequalities
by exploiting the growth of Wmem for triangles with vanishing area. This now readily fits into our modified line search
approach. In fact, if we compare our nonlinear energy to interior point methods [51, Chapter 19] we see that the
logarithmic penalty in the energy takes the role of a barrier term which ensures that we stay in the admissible setZT .
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Overall, we see that in both cases we can treat the inequality constraints in the line search and hence apply
algorithms for equality-constrained optimization with a considerably lower number of constraints. Note, that this
approach can be adapted for trust region methods by limiting the size of the trust region appropriately.

Augmented Lagrange. Next, we describe our approach to solving these equality-constrained problems based on the
augmented Lagrange method. First, let us briefly recall the Lagrangian formulation of our problem. In fact, this means
we seek for a saddle point of the Lagrangian

L(z, λ) = E(z) − Q(z) · λ (Lag)

with z ∈ R2|E| and Lagrange multiplier λ ∈ R3|V0 |. The necessary condition for a saddle point (z, λ) ∈ R2|E| × R3|V0 | is

DL(z, λ) = (DzL(z, λ), DλL(z, λ))T = (DzE(z) − DzQ(z) · λ, −Q(z))T = 0 , (17)

where Dz and Dλ denote the Jacobian with respect to z and λ, respectively.
Instead of directly applying Newton’s method to this equation we consider the augmented Lagrange method [52,

51]. It is a combination of the Lagrangian approach with the quadratic penalty method where we construct a series
of unconstrained optimization problems in z to approximate the solution of (OPT). For the sake of completeness, we
briefly recall it here. The augmented Lagrangian is defined by

L(z, λ, µ) = E(z) − Q(z) · λ +
µ

2
∥Q(z)∥22, (18)

and a sequence (zk, λk, µk) of approximate solutions, approximate Lagrangian multipliers, and penalty parameters is
generated by alternating between minimizing L( · , λk, µk) to obtain zk+1 and computing updates to λk and µk. Hereby,
the penalty parameter µ is increased until we reach sufficient attainment of the equality constraints. On the other
hand, λ is updated by an increasingly accurate estimation of the correct multipliers λ∗ solving (17). This can be
accomplished in various ways, one popular way which we choose to follow is to set λk+1 = λk−µk Q(zk+1). Though we
cannot expect the augmented Lagrange method to converge for arbitrary initial data, under reasonable assumptions,
one can prove that the sequence λk obtained this way converges to λ∗, which significantly improves convergences
compared to the quadratic penalty method, see for example [51]. We want to remark that though our problem (OPT)
involves strict inequality constraints, the local convergence theory for the augmented Lagrange method given in [51,
Chapter 17] applies to our problem. The triangle inequality constraints define an open set and thus (OPT) can be
seen as an equality-constrained problem over an open set. As [51, Theorem 17.5 & 17.6] are only concerned with
local minimizers and provide local results, they still hold if the problem is only defined on an open set after possibly
modifying constants describing local neighborhoods.

An explicit algorithmic description of the method with all involved parameters and derivatives will be provided in
the appendix.

Unconstrained Optimization. Using the augmented Lagrange method leads to a series of unconstrained optimization
problems. They are typically non-convex, i.e. we encounter indefinite Hessians D2

z L of the Lagrangian. This means
that a simple Newton’s method with line search might not be an efficient and robust approach as we are not guaranteed
to obtain a descent direction. To rectify this, we choose a simple adaption suggested in [51, Section 3.4]. First, we
determine a shift τk such that the matrix D2

z L(zk, λk, µk) + τk Id is positive definite. This achieved by starting with an
initial estimate and then increasing τk until a Cholesky decomposition succeeds. Then, a descent direction is obtained
by solving the linear system (

D2
z L(zk, λk, µk) + τk Id

)
dk = −DzL(zk, λk, µk). (19)

Along this direction we perform an Armijo-type backtracking line search. Note again, that the local convergence
theory for Newton-type methods is still valid even though we minimize over an open set defined by the strict triangle
inequalities, cf . [53, Chapter 1]. In some instances, we could speed-up the minimization by first performing a small
number of iterations with a BFGS approximation of the Hessian.

To compute the descent direction as above, we need the gradient and the Hessian of our constraint functionals Q.
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We already evaluated DzQ ∈ R3|V0 |,2|E| in (8) and compute for the Hessian of Q

D2
zQ · λ =

∑
v∈V0

∂zl∂zkQv · λv


l,k=1,...,2|E|

the components as

∂zl∂zkQv(z) = vec

n−1∑
j=0

q01(z) . . . ∂zl∂zk q j, j+1(z) . . . qn−1,0(z)


+ vec


n−1∑
i, j=0
i, j

q01(z) . . . ∂zl qi,i+1(z) . . . ∂zk q j, j+1(z) . . . qn−1,0(z)

 ,
which can also be evaluated with O(nv) cost. We provide further details on the Hessian computation in the supple-
mentary material.

7. Reconstruction of an immersion

In the preceding sections, we discussed the geometry as well as constrained optimization problems on the NRIC
manifoldM, i.e. in terms of edge lengths and dihedral angles. The remaining task is to reconstruct for given z ∈ M
an immersion X ∈ N of the simplicial surface in R3 with z = Z(X). Beyond the computation of vertex coordinates
for z ∈ M, one frequently asks for an approximate immersion X ∈ N for z < M such that Z(X) ≈ z. Indeed, the
computation of just approximate immersions is required in case of

• modeling of deformations energies in terms of dihedral angles and edge lengths, i.e. using the linear embedding
space R2|E| instead ofM,

• using a high tolerance for the fulfillment of the constraints in the augmented Lagrange or a penalty method,

• coordinates z which are only approximately computed numerically.

Thus, we ask for a reconstruction map R : R2|E| → N , such that R|M is the right inverse of Z with Z ◦ R = IdM, where
IdM is the identity on the NRIC manifold. Let us emphasize that by the rigid body motion invariance of our NRIC
approach, we obtain R◦Z(X) = QX, where X ∈ N and Q ∈ SE(3) is some rigid body motion acting on the immersion.

Variational approach. For some given z ∈ R2|E|, where not necessarily z ∈ M, we are looking for the nodal positions
X ∈ N , such that the resulting Z(X) ∈ M is as close as possible to z. Fröhlich and Botsch [2] have used a least squares
functional to build a variational reconstruction, i.e. they compute

arg min
X∈R3|V|

W [z, Z(X)] (20)

withW [z, z̃] describing the proximity of z and z̃. Note that the solution is only unique up to a rigid deformation. A
simple example of a quadratic functionalW is given by (15) as it was used by Fröhlich and Botsch. They proposed
a Gauß-Newton method [51, Section 10.3] to solve (20), however, for general z ∈ R2|E|, one still has to solve a
high-dimensional and nonlinear optimization problem in R3|V|. If z ∈ M and the initialization of the Gauß-Newton
method is close to the solution, it usually converges in only a few iterations. However, if z is far away fromM and
the initialization is poor, artifacts may occur.

Constructive approach. For z ∈ M a constructive reconstruction of the immersion X ∈ N can be derived by means
of frames and transition rotations, as they were used to define the integrability conditions (cf . Section 3). This method
was introduced by Lipman et al. [11] and further elaborated in [3]. Before we investigate a combination of the
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constructive and the variational approach for z <M, let us briefly review the constructive reconstruction. Assume we
are given an admissible target z = (l, θ) ∈ M. Since the reconstruction from lengths and angles is only defined up to
rigid body motions, we further assume that we are given the position of one vertex and the orientation of an adjacent
triangle f0 in the form of a frame F0. If f ∈ F is a neighboring triangle of f0, one can infer the induced transition
rotations R0 f from z and thus determine F f = F0R0 f . Repeating this iteratively, one can construct frames for all faces.
This algorithm is indeed well-defined on simply connected triangulations due to the integrability constraints, i.e. if
there are two paths connecting a triangle f to f0, then the frames constructed along the two paths coincide. Given
frames for all faces and hence the orientation of all triangles, one can finally reconstruct the nodal positions.

Adaptive spanning trees. Next, we take into account a violation of the integrability condition (I) for z < M and ask
for a reconstruction of an approximate immersion. Let us remark that Wang et al. [3] handle non-admissible targets
z <M when modeling surfaces via a modification of l and θ. They study a least-square type functional and relax in a
least square sense the identity F f = F0R0 f as well as (D.1).

X1 X2 (BFS) (MST) (SPT)

Figure 5: Left: Input shapes X1 and X2 (taken from [54]) and reconstruction from linear average (Z(X1) + Z(X2))/2 <M with the local violations
of the integrability condition as color map. Note that violations are highly concentrated, e.g. in the armpits. Rightmost shapes: reconstruction using
breadth-first search (BFS), minimal spanning tree (MST) and shortest path tree (SPT). The triangulation is color-coded with respect to the order of
traversal. See video for an animation of the reconstruction order.

The direct frame-based reconstruction with a spanning tree of the dual graph built by breadth-first search is very
sensitive to violations of the integrability. In fact, the errors occurring when walking over such a violation propagate
to all following frames and are even amplified, cf . Figure 5. In addition, reconstructing nodal positions of a face along
two different paths connecting it to the initial face f0, where at least one is passing a zone of violated integrability
conditions, leads to substantially different results and thus visual artifacts. However, the regions of violation appear
frequently to be highly localized in practice, cf . Figure 5. Thus, we build a spanning tree which traverses faces with
violation of the integrability condition as late as possible in the mesh traversal for the reconstruction. To this end,
we consider the dual graph of K with weights based on the integrability condition. Each dual edge corresponds to a
primal edge e = (v, v′) ∈ E and we can assign to this dual edge a scalar weight reflecting the lack of integrability we

by averaging the violation of integrability at the two adjacent vertices v and v′:

we :=
|tr Iv(z) − 3|+|tr Iv′ (z) − 3|

2
, (21)
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Figure 6: Left: Input shapes X1 and X2 (small) and reconstruction from linear average (Z(X1) + Z(X2))/2 < M with local violations of the
integrability condition as color map. Rightmost shapes: reconstruction order using a minimal spanning tree (order as colormap), visual artefacts
along the body and final solution after one step of a Gauß-Newton smoothing.

where Iv(z) is the matrix-valued map defined in (I). Note that Iv(z) ∈ SO(3) and that tr Q = 3 ⇔ Q = Id for
Q ∈ SO(3). Now, the weights (21) are used to build a spanning tree adapted to the problem. The first variant is to
construct a minimal spanning tree (MST) of the dual graph, which is built such that the sum of all edge weights in the
tree is minimal. Such a minimal spanning tree can be computed via Prim’s algorithm and provides a way to traverse
the dual graph while avoiding unnecessarily large violations of the integrability. Another variant is to construct a
shortest path tree (SPT), which is built such that the path distance from the root to any other vertex in the tree is the
shortest in the whole dual graph. This can be achieved by Dijkstra’s algorithm and provides a way to traverse the
dual graph such that for each face the sum of integrability violation along the dual path used for its reconstruction is
minimal. We compare both novel variants against the original breadth-first search (BFS) in Figure 5. A pseudo code
of the entire algorithm is given in the appendix. Formally, the algorithm — using either (MST) or (SPT) — is only
defined for z ∈ M. In particular, the triangle inequality is assumed to be defined. However, the algorithm can easily be
generalized for z ∈ R2|E| with T f (z) ≤ 0 for some face f by setting the interior angles of f to zero. By our definition of
(I) and edge weights (21) those triangles will be automatically considered as late as possible in the adaptive algorithm.

Preassembled tree. The runtime of the tree-based reconstruction algorithm is dominated by the cost for the construc-
tion of the spanning tree. Thus, if one aims at reconstructing numerous immersions of a discrete surface with the same
connectivity and a very high resolution (i.e. many vertices) it would be desirable to use a preassembled spanning tree.
Of course, this preassembled tree has to be reasonable for a large set of lengths and angles. If we are given samples
z1, . . . , zn ∈ M and corresponding edge weights w1, . . . ,wn ∈ R|E|, we simply set we = maxi wi

e for all e ∈ E and
construct a spanning tree based on these weights.

Hybrid approach. Just applying our constructive reconstruction algorithm works very well for z <M as long as the
violations are localized as in Figure 5. However, we observe imperfect results when the violations are distributed over
larger areas, cf . Figure 6. In this case, we suggest a hybrid method combining our robust constructive reconstruction
and as a post processing the variational reconstruction. In detail, we make use of the (still imperfect) output of our
constructive reconstruction to initialize the variational reconstruction as in (20). Typically, a single Gauß-Newton step
is sufficient to smooth the result adequately (cf . Figure 6).

8. Numerical experiments and comparisons

In this section, we study qualitative and quantitative properties of the NRIC tools and demonstrate that in particu-
lar for modeling with near isometric deformations the NRIC manifold outperforms established methods that consider

15



nodal positions as primal degrees of freedom. To this end, we pick up the generic variational problem (OPT) intro-
duced in Section 6 together with the proposed augmented Lagrange method. In the following, we discuss different
objective functionals E in (18) and depending on the application additional constraints. Note, however, that the con-
straint functional Q in (18), which describes the NRIC manifold implicitly via (7), remains unchanged.

Elastic averages. Let X1, . . . , Xn ∈ N be a set of example shapes (sharing the same connectivity). Frequently, one
is interested in a mean or average shape, cf . [36]. Given an elastic deformation energy, a so-called weighted elastic
average is defined to be the minimizer of a weighted sum of elastic energies for deformations from the input shapes
to the free shape. This can be translated directly to our NRIC manifold, i.e. for a given elastic deformation energyW
onM and convex weights µ ∈ Rn we define the weighted elastic NRIC average as a solution of (OPT) with

E(z) =
n∑

i=1

µiW[Z(Xi), z] . (22)

In Figure 7, we show (the reconstructions of) weighted elastic NRIC averages for a set of six hand shapes and different
weights µ1, . . . , µ6. Here, we have used the nonlinear deformation energy (13) in (22).

X1 X2 X3

X4 X5 X6

µ ≡ 1
6

µ1,2,6 = 0.03
µ3 = 0.6
µ4,5 = 0.15

µ2 = 0.48
µ4,5 = 0.07
µ6 = 0.385

µ2,5 = 0.5

Figure 7: Reconstruction of nodal positions from elastic averages of six hand poses (grey) with different (convex) weights µ ∈ R6 computed as
minimizer of (22) on the NRIC manifold.

Isometric deformations via additional constraints. Interesting applications can be described by considering (OPT)
along with the simple objective E(z) =W[z∗, z] but with additional, simple coordinate constraints. For example, in
Figure 4 we have seen experiments where we posed lengths constraints li = l∗i for i ∈ I on the coordinates z = (l, θ) for
some index set I ⊂ E and prescribed target lengths l∗. Similarly, we obtain an elegant way to simulate the isometric
folding of a (flat) sheet of paper given in NRIC as z∗ = (l∗, θ∗) where θ∗ = 0. To this end, we pose the length
constraints le = l∗e for all e ∈ E along with θi = const , 0 if i ∈ I for some index set I ⊂ E. Note, that under
these length constraints the nonlinear and quadratic energy approach agree if we compute the weights in (15) from
the reference z∗. For example, in Figure 8 we impose the constraint θi = π/2 for the edges on two short line segments
on two neighboring sides of the sheet. Since all edge lengths are fixed and all other dihedral angles are degrees of
freedom for the minimization of (13) onM, we obtain a perfect isometric deformation as indicated by the vanishing
discrete Gauß curvature (Figure 8, right). In comparison, vertex-based methods as [48] or [40] do not achieve a
perfect isometry—even when computed with a very high membrane stiffness (Figure 8, left). For the optimization in
nodal positions, we used the energy X 7→ Wnl[z∗,Z(X)] with a shell thickness parameter δ = 10−3. In fact, further
reducing δ one observes numerical instabilities. This is due to the fact that isometric deformations induce bending
distortions only but optimizing bending energies in terms of nodal positions is a highly nonlinear singular perturbation
problem that quickly triggers numerical issues. Conversely, the corresponding bending energy in NRIC is quadratic.
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Figure 8: Paper folding with local constraints for dihedral angle: simulation in vertex space (left) leads to infinitesimal isometry violations whereas
the result in NRIC is completely isometric (right). The absolute value of discrete Gauß curvature (as angle defect) is shown using the color map

0 0.03, which is zero everywhere on the right. Furthermore, the corresponding histograms are plotted aside the surfaces.

Besides vanishing Gauß curvature, pure isometric deformations exhibit further characteristics, as illustrated in
Figure 9. In this example, we have a very similar setup as in Figure 8 but we pose the angle constraints on two
opposite sides. First, let us point out that we observed convergence of the augmented Lagrange method described
above to different local minima when using different parameters for the increase of the penalty parameter µ. We show
two different local minima in Figure 9 where we obtained the lowest energy value when increasing µ conservatively
(shown on the right). Now, since the NRIC results are perfectly isometric and rather smooth deformations of the
flat sheet one can indeed observe effects predicted analytically by the Hartman-Nirenberg theorem [55, 56]. Loosely
speaking, isometric deformations of a flat sheet can locally be described either as flat patches or segments of straight
lines (rulings) going to the boundary. In the middle and right columns of Figure 9 one can easily identify flat triangular
regions as well as a cone-like bundle of straight lines propagating towards the boundary. These structures are not
reflected by the vertex-based numerical minimizer already discussed above (Figure 9, far left).

Time-discrete geodesics. So far we have only considered static examples where a single shape was optimized subject
to external forces or boundary conditions. However, one can easily generalize (OPT) to optimize for multiple shapes
simultaneously, for instance, to simulate a kinematic behavior. We focus on the computation of time discretized
geodesics in the NRIC manifold here. On the manifold M with metric g defined in (16) a geodesic connecting
end points zA and zB in M is the curve z : [0, 1] → M minimizing the path energy

∫ 1
0 gz(t)(ż(t), ż(t)) dt subject to

z(0) = zA and z(1) = zB. In particular, the minimizer (z(t))0≤t≤1 obeys the constant speed property gz(ż(t), ż(t)) = const.
Heeren et al. [40] introduced the concept of time-discrete geodesics (in a vertex-based approach) as a variational
approximation of continuous geodesics. For K ∈ N, they consider a finite sequence z0, . . . , zK inM with z0 = zA and
zK = zB and define the time-discrete path energy

E[z0, . . . , zK] = K
K∑

k=1

W[zk−1, zk] , (23)

whereW is assumed to be a local approximation of the squared Riemannian distance and zk ≈ z(k/K). Minimizers
(z0, . . . , zK) of (23) for fixed end points z0 and zK are said to be time-discrete geodesics. In particular, they obey a
discrete constant speed property, i.e. there is a uniform energy distributionW[zk−1, zk] ≈ const along the curve.

The concept of discrete geodesics directly translates to the NRIC manifold and the path energy in (23) can be
considered as an objective functional in (OPT). Note, however, that this increases the number of free variables sub-
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E(z) ≈ 159.6 E(z) ≈ 150.3

Figure 9: Once more paper folding with local constraints for dihedral angle: simulation in vertex space (left) leads to infinitesimal isometry
violations whereas the results in NRIC are completely isometric (middle, right). The result in the middle shows a local minimum obtained
by the augmented Lagrange method when increasing the penalty parameter µ (too) aggressively exhibiting higher deformation energy (shown
below) than the right result where the penalty was increased more conservatively. Triangle-averaged mean curvature is shown as color map

0 ≥ 0.005, flat triangular regions can only be seen in the NRIC simulations.

stantially. In Figure 10, we show different time-discrete geodesics in NRIC where we use the quadratic deformation
energy (15) in (23). In particular, we compare for end shapes being two oppositely bent plates our NRIC geodesic
(orange) to the linear interpolation (green) in the embedding space R2|E|, which corresponds to a naive transfer of
the projection approach by Fröhlich and Botsch [2]. As indicated by the histogram plots, the discrete constant speed
property can only be obtained for the NRIC formulation.

Furthermore, we can combine the computation of time-discrete geodesics with further constraints on the coordi-
nates, e.g. to simulate isometric deformation paths. For example, in Figure 11 we compare the computation of (almost)
isometric geodesic paths between perfectly isometric end shapes taken from Dudte et al. [57] to vertex-based meth-
ods. A similar example is shown in Figure 12, where the first input shape z0 = (l∗, θ∗) describes a hyperbolic monkey
saddle and the second input shape is given by a reflection zK = (l∗,−θ∗) of the saddle. Figure 12 demonstrates that
our approach is able to realize a perfectly isometric deformation path (orange) by enforcing lk = l∗ for all 0 < k < K,
whereas vertex based optimization methods fail.

Timings. Lastly, let us discuss the runtimes of the proposed method, where all computations were performed using
a desktop computer with an Intel(R) Core(TM) i7-4790 CPU and 16 GB RAM. In our framework, we use the Eigen
library [58] for linear algebra tasks and CHOLMOD [59] for the Cholesky decomposition. At first, we list timings
for the reconstruction performed without parallelization. As a representative example, we report on timings measured
on the Dyna dataset [54] (cf . Figure 5) where |V| ≈ 6.9k. The generation of (MST) or (SPT) takes about 12ms,
the generation of a spanning tree via (BFS) takes about 1ms. The traversal of a spanning tree takes about 5ms, and
one Gauß-Newton iteration is done in 330ms (with 80% spending in the linear solver). Next, computing the entries
of the Hessian of the constraint functional Q requires, again without parallelization, 16ms for the discrete surfaces
considered in Figure 8 and 112ms for the Dyna dataset considered in Figure 4. Detailed timings for the optimization
described in Section 6 are listed in Table 1. Note, that the evaluation of the augmented Lagrangian L and its derivatives
requires substantially more time than computing the entries of D2

zQ. This originates from computing the square of
DzQ and assembling the Hessian in CSR format because these operations do not benefit from parallelization in our
current implementation.

Compared to computations in nodal positions, our method requires more memory due to the increased number of
primal degrees of freedom. However, because this number is approximately twice the number of nodal positions the
total memory consumption only increases by a constant factor of approximately four.
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Figure 10: Bottom: discrete geodesic in NRIC with input data from [16] and membrane distortion as colormap (0 ≥ 1); above:
Linear interpolation in ambient space R2|E| as in [2] with energy distribution (green) vs. geodesic interpolation on M with constant energy
distribution (orange).

9. Conclusion

We introduce a framework that allows us to pose and solve geometric optimization problems in terms of NRIC.
The framework is built on several novel concepts. First, we introduce a Riemannian structure for the NRIC manifold
stemming from an implicit description via integrability conditions and a physically-motivated nonlinear elastic en-
ergy. In particular, we demonstrate how the notion of a tangent space can be used to identify infinitesimal isometric
variations. Second, we present an approach based on the augmented Lagrange method and a modified line search
for solving generic optimization problems in NRIC. Third, we develop a hybrid algorithm for the reconstruction of
nodal positions from length and angle coordinates that uses a mesh traversal to initialize a Gauß–Newton solver. We
tested our framework on different problems including shape interpolation and paper folding. A particular strength is
the simulation of true isometric deformations—a task where well-established vertex-based methods often fail.

Limitations and challenges. We see great potential in using NRIC for geometric optimization problems and expect
that the techniques we present will be further developed. We plan to formulate an extended geodesic shape space
calculus (cf . [4]) including geodesic extrapolation and parallel transport in NRIC and expect to profit from the rigid
motion invariance of the coordinates and their robustness for near-isometric deformation. In the context of a sta-
tistical analysis of shapes, our NRIC formulation enables direct processing of input data without an a priori rigid
co-registration. To this end, our NRIC manifold is a natural starting point for the development of a corresponding
Riemannian principal component analysis.

Though our experiments demonstrate the benefits of NRIC-based optimization, our current framework has several
limitations and poses challenges in making the optimization more efficient. First, the current implementation can only
handle simply connected surfaces. An extension to higher-genus surfaces would require to include integrability con-
ditions along non-contractible paths that generate the fundamental group. This would lead to more global constraints
in our optimization problems. Typical examples of surfaces in geometric modelling have only a small number of
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Figure 11: Intermediate shapes at t = 1/3 of a discrete geodesic between two perfectly isometric end shapes (grey) taken from Dudte et al. [57]
obtained via NRIC optimization (orange) and vertex-based methods as in [40] (blue) resp. [2] (green). Note that we preserve the isometry due
to our hard length constraints. In contrast, the vertex-based methods get either stuck in local minima (blue) or reveal artifacts such as unnatural
asymmetries (green).

t

∥l
(t

)−
l∗
∥ 2

Figure 12: Isometric geodesic paths. Left input shape (l∗, θ∗) as hyperbolic monkey saddle, right input shape is the reflection (l∗,−θ∗). Comparison
of discrete geodesics computed in NRIC (orange, perfectly isometric) and by methods based on nodal positions (i.e. Heeren et al. [40] (blue) and
Fröhlich and Botsch [2]). The latter approaches are not able to resolve pure isometric geodesics as indicated by a histogram of varying lengths on
the right. See also supplementary video.

generators of the homology group. However, this necessity of complicated constraints is a general limitation of our
method compared to nodal positions.

Second, a fundamental challenge is to reduce the number of degrees of freedom and integrability conditions. Our
current framework works with 2|E| variables and 3|V| integrability conditions per shape. This implies a larger number
of variables compared to optimization in nodal positions, which in turn means increased memory requirement and
more costly iterations. Here, it might be worthwhile to explore model reduction approaches. Furthermore, the triangle
inequality constraints are in general challenging to take care of in the implementation. We found in all our experiments
that the proposed adapted line search, especially in conjunction with the nonlinear deformation energy, was able to
handle them robustly.

Finally, we aim to account for point constraints in our NRIC-based optimization. These type of constraints fre-
quently appear, for instance, in physical simulations as forces or boundary conditions. This could be accomplished
by performing a partial reconstruction of the points with attached constraints using an explicit formula that results
from tracing the paths in Algorithm 3. Then the derivatives of the explicit formula need to be computed with re-
spect to NRIC to enable their use in optimization problems which might be a feasible task for modern automatic
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example iterations avg. times per Newton iteration
Figure N aug. Lagrange Newton evaluation solve line search

4 (left, avg.) 5220 18 83 30 ms 23 ms 3 ms
4 (right) 41328 14 121 281 ms 201 ms 15 ms
7 (avg.) 36552 13 203 263 ms 244 ms 18 ms
8 6272 83 477 34 ms 34 ms 7 ms
9 (right) 24832 46 454 173 ms 84 ms 7 ms
10 (top) 5760 10 15 16 ms 69 ms 2 ms
10 (bottom) 36000 12 65 338 ms 732 ms 10 ms
11 69936 11 44 626 ms 301 ms 22 ms
12 32240 11 173 218 ms 193 ms 5 ms

Table 1: Performance statistics of our approach on the different examples shown before. From left to right: number of degrees of freedom, number
of iterations of the augmented Lagrange method, total number of Newton iterations, average time for evaluation of function and derivatives per
Newton iteration, average time for computing τ and solving the linear system per Newton iteration, and average time for line search per Newton
iteration.

differentiation frameworks. Nonetheless, this would introduce highly nonlinear and nonlocal terms to the optimiza-
tion potentially limiting the performance of our method. This introduces the challenge of devising different ways to
combine NRIC-based modeling with point constraints.

Appendix A. Rotations qi j

As noted above, each induced transition rotation depends on one dihedral angle and on the three edge lengths of a
triangle. We simplify our notation for the computation of the partial derivatives and define

q̂(θ, a, b, c) := q0(θ) q2

(
arccos

(
a2 + b2 − c2

2ab

))
, (A.1)

where a, b, and c are the edge lengths and θ is the dihedral angle. To simplify the notation even further in the following,
we define the rational function Q(a, b, c) = a2+b2−c2

2ab . The angle of the rotation around the second standard basis vector
is given by the law of cosines and using trigonometric formulas we can thus simplify its matrix representation to

q2 (arccos Q) =

√
1 + Q

2
+

√
1 − Q

2
k.

If we multiply this with the rotation around the zeroth standard basis vector we arrive at

q̂(θ, a, b, c) = cos
θ

2

√
1 + Q

2
+ sin

θ

2

√
1 + Q

2
i − sin

θ

2

√
1 − Q

2
j + cos

θ

2

√
1 − Q

2
k.

With this representation at hand, it is now possible to compute its first and second derivative. In particular, this is a
viable task for a symbolic differentiation tool and we refer to the supplementary material for the results.

Appendix B. Local membrane energy

To understand the nonlinear membrane energy Wmem better and prepare the computation of its derivatives, we
study in this section the contribution of a single triangle f ∈ F . To this end, let a, b, c be the edge lengths of f in the
undeformed configuration z and ã, b̃, c̃ the corresponding edge lengths of the deformed z̃. Our goal now is to express
a f ·Wmem(G[z, z̃]| f ) in terms of these lengths.
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We start with the components of G as given in (10). The diagonal entries are of course simply given by b2 and a2.
For the off-diagonal entries, recall

⟨E1( f ), E2( f )⟩ = ∥E1( f )∥ ∥E2( f )∥ cos (∠(E1( f ), E2( f ))) ,

where by the law of cosines we have cos∠(E1( f ), E2( f )) = a2+b2−c2

2ab . Hence, we get the representation

Ĝ(a, b, c) =
(

b2 − 1
2 (a2 + b2 − c2)

− 1
2 (a2 + b2 − c2) a2

)
, (B.1)

where we use the hat to indicate the local representation of an object. From this, we immediately compute the
determinant as

det Ĝ(a, b, c) =
1
4

(a + b + c)(−a + b + c)(a − b + c)(a + b − c) = 4 a f (a, b, c)2, (B.2)

with a f (a, b, c) the triangle area obtained via Heron’s formula. The local representation of the discrete distortion
tensor is given by

Ĝ(a, b, c, ã, b̃, c̃) = Ĝ(a, b, c)−1Ĝ(ã, b̃, c̃). (B.3)

By the multiplicativity of the determinant, we obtain

det Ĝ = (det Ĝ(a, b, c))−1Ĝ(ã, b̃, c̃) =
a f (ã, b̃, c̃)2

a f (a, b, c)2 (B.4)

for the determinant of the distortion tensor. Computing the trace requires in contrast an explicit representation of Ĝ
and we finally obtain

tr Ĝ =
1

8 a f (a, b, c)2

(
ã2(−a2 + b2 + c2) + b̃2(a2 − b2 + c2) + c̃2(a2 + b2 − c2)

)
. (B.5)

Together, we have assembled all components to write the contribution of f as

a f (a, b, c) ·Wmem(Ĝ(a, b, c, ã, b̃, c̃)) (B.6)

with Wmem the energy density from Definition 1. We provide the derivatives of the membrane energy along with the
derivatives of the bending energy in the supplementary material.

Appendix C. Optimization algorithms

In this section, we will discuss the algorithmic details of the optimization procedure introduced in Section 6 for
our generic problem (OPT). First, we start with detailed description of the augmented Lagrange method adapted from
[51] in Algorithm 1, which provides all parameters related to the increase of the penalty parameter and the update of
the Lagrange multiplier estimates. In almost all examples, our default parameters µ0 = 10, λ0 = 0, µ+ = 100, and
η+ = 0.9 worked reasonably well. Only in the paper folding examples (cf . Figure 8 and Figure 9), we decreased µ+
and η+ because we noticed this leads to local minima with lower energy values as was discussed in Section 8.

To compute the approximate minimizer, we use the variation of the Newton-type method introduced before which
requires the first and second derivatives of the augmented Lagrangian L. The first derivative of L is given by

DzL(z, λ, µ) = DzE(z) − DzQ(z) · λ + µDzQ(z)TQ(z)

and hence the second derivative turns out to be

D2
z L(z, λ, µ) = D2

zE(z) + D2
zQ(z) · (µQ(z) − λ) + µDzQ(z)T DzQ(z),
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Algorithm 1 Augmented Lagrange method for (OPT), [51, Alg. 17.4]
Input: Initial NRIC z0, initial penalty µ0, initial multipliers λ0, constraint tolerance εQ, optimality tolerance εL,

penalty increase factor µ+, tolerance increase exponent η+
Output: Approximate solution zk to (OPT)

1: for all k = 0, 1, 2, . . . , kmax do
2: Compute approximate minimizer zk+1 of L( · , λk, µk) with ∥DzL(zk+1, λk, µk)∥2 ≤ ωk

3: if ∥Q(zk+1)∥∞ ≤ εQ and ∥DzL(zk+1, λk, µk)∥2 ≤ εL then ▷ Stopping criterion
4: return zk+1

5: end if
6: if ∥Q(zk+1)∥∞ ≤ ηk then ▷ Recompute multiplier
7: λk+1 = λk − µkQ(zk+1)
8: µk+1 = µk

9: ηk+1 = max(ηk/(µk+1)η+ , εQ)
10: ωk+1 = ωk/µk+1

11: else ▷ Increase penalty parameter
12: λk+1 = λk

13: µk+1 = µ+ · µ
k

14: ηk+1 = max(1/(µk+1)0.1, εQ)
15: ωk+1 = 1/µk+1

16: end if
17: end for

where

D2
zQ · (µQ(z) − λ) =

∑
v∈V0

∂zl∂zkQv · (µQv(z) − λv)


l,k=1,...,2|E|

.

Again, the detailed derivatives of the integrability constraints and of the energy are provided in the supplementary
material. Now, we can provide all the steps of this method in an integrated fashion as Algorithm 2. Again, in almost
all examples our default parameters τ+ = 10 and either β = 10−3 or β = 10−4 worked well.

Appendix D. Direct reconstruction algorithm

In Section 7, we have already outlined how the frames can be constructed iteratively using the transition rotations
induced by z ∈ M. To complete the description of the reconstruction algorithm, we also need to detail how to construct
the nodal positions. To this end, consider a face with a given discrete frame F and target edge lengths l0, l1, l2. Then
we obtain embedded edge vectors Ei ∈ R3 with ∥Ei∥ = li for i = 0, 1, 2 by

E1 = l0F

100
, E2 = l1F

− cos γ3
sin γ3

0

, E3 = l2F

− cos γ2
− sin γ2

0

, (D.1)

and finally nodal positions (Xi)i=0,1,2 such that Ei = Xi−1 − Xi+1. Note that the inner angles γ2 and γ3 can be obtained
from the edge lengths using the law of cosines. The complete reconstruction algorithm is summarized in Algorithm 3.
Note that in practice, we need to construct at most one nodal position per face (except for the first face f0), and often
even none as the positions are already determined.
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Algorithm 2 Line search Newton-type method for L, [51, Alg. 3.1, 3.2, 3.3]
Input: Initial NRIC zk, gradient tolerance ωk, initial/minimal shift β, shift increase factor τ+
Output: Approximate minimizer zk+1 of L( · , λk, µk)

1: Set zk,0 = zk

2: for j = 0, 1, 2, . . . , jmax do
3: Evaluate L(zk, j, λk, µk), DzL(zk, j, λk, µk), and D2

z L(zk, j, λk, µk) ▷ Evaluation
4: if ∥DzL(zk, j, λk, µk)∥ ≤ ωk then ▷ Stopping criterion
5: return zk+1 = zk, j

6: end if
7: if mini

(
D2

z L(zk, j, λk, µk)
)

ii
> 0 then ▷ Determine shift

8: τ j = 0
9: else

10: τ j = −mini

(
D2

z L(zk, j, λk, µk)
)

ii
+ β

11: end if
12: loop
13: Attempt Cholesky decomposition of D2

z L(zk, j, λk, µk) + τ j Id
14: if factorization succeeds then
15: stop
16: else
17: τ j ← max(τ+ · τ j, β)
18: end if
19: end loop
20: Solve

(
D2

z L(zk, j, λk, µk) + τi Id
)

d j = −DzL(zk, j, λk, µk) ▷ Descent direction
21: repeat ▷ Line search
22: α j = 0.5α j

23: until L(zk, j + α jd j, λ
k, µk) ≤ L(zk, j + α jd j, λ

k, µk) + 0.1α j DzL(zk, j, λk, µk)T d j

24: Set zk, j+1 = zk, j + α jd j

25: end for
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