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Summary

This thesis makes contributions to shape spaces and shape optimization of discrete surfaces. Dis-
crete surfaces are triangle meshes with certain regularity and are ubiquitous in many applications
in computer graphics, geometric design, and computational anatomy to name only a few.

We consider the space of all immersions of a fixed discrete surface. Heeren et al. [HRS+14] used
a physically-inspired metric derived from an elastic shell model to introduce the structure of a Rie-
mannian manifold on this space resulting in the shape space of discrete shells. Rumpf and Wirth
[RW15] introduced the time-discrete geodesic calculus used for this shape space.
In this thesis, we show that this space can be represented as an implicit submanifold by consid-
ering the Nonlinear Rotation-Invariant Coordinates (NRIC) consisting of the vector stacking edge
lengths and dihedral angles. To this end, we exploit discrete integrability conditions akin to the fa-
mous Gauß–Codazzi equations introduced by Wang, Liu, and Tong [WLT12], leading to the implicit
description. Furthermore, we also show that NRIC are helpful to phrase and numerically solve geo-
metric variational problems on discrete surfaces, especially if they involve isometry constraints.
Based on the implicit representation, we propose a new method to construct submanifolds from
shape datasets. We augment Principal Geodesic Analysis, an algorithm from Riemannian statistics,
by a sparsity-inducing regularization leading to Sparse Principal Geodesic Analysis. The resulting
sparse nonlinear modes of variation span a shape submanifold we can equip with a product struc-
ture based on decoupling modes. We propose two efficient parametrizations of this submanifold:
One based on a grid-based multilinear interpolation of the Riemannian exponential map on individ-
ual factors combined affinely and one based on neural networks with an architecture and training
procedure incorporating the product structure. These parametrizations are useful for (near) real-
time applications in computer graphics, as demonstrated by numerical examples.
Finally, we introduce a modification of the metric that moves surfaces with self-intersections in-
finitely far away from ones without. We will do so by leveraging the tangent-point energy, a repulsive
nonlocal curvature energy for which Yu et al. [YBSC21] recently introduced an efficient discretiza-
tion and numerical tools for its application in computer graphics. Our principal insight is that the
graph of this energy over the space of discrete shells yields a metric as desired while retaining the
appeal that geodesics provide physically-sound interpolations. This leads to the space of repulsive
shells. We also propose numerical methods to compute geodesics and exponential maps on it.

Additionally, we consider two shape optimization problems on discrete surfaces outside the
realm of shape spaces. First, we introduce an approach to stochastic bilevel shape optimization that
models, figuratively speaking, a design engineer optimizing shape parameters, a test engineer devis-
ing worst-cased load scenarios, and stochastic manufacturing inaccuracies. We develop numerical
algorithms to compute solutions of the corresponding mathematical model and apply it to optimize
thickness distributions on a discrete shell modeling roof-type structures.
Furthermore, we consider a phase-field model for surface segmentation into equally sized parts with
minimal interface length and distortion when conformally mapping the segments to the plane. To
compute the distortion, we adopt the approach of Sharp and Crane [SC18] and introduce a diffuse
version of the Yamabe equation used as a PDE-constraint. Finally, we discretize the resulting varia-
tional problems using finite elements and standard algorithms for nonlinear optimization.
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Nomenclature

The derivatives of a functional F : Rn → Rm , (ξ1, . . . ,ξn) 7→ F [ξ1, . . . ,ξn] with respect to the i -th co-
ordinate, respectively ξi , are denoted by either ∂iF or ∂ξiF depending on the context. The Jacobi
matrix at a point ξ is denoted by DξF .

Differential Geometry

M a generic manifold
ψ : U ⊂Rd →M local parametrization of a d-dimensional manifold
TpM tangent space of M at point p ∈M
g , gp Riemannian metric (at p ∈M), as well as its matrix representation
L, E length and path energy functional on M
expp , logp exponential map and logarithm at p on M
W approximation of the squared Riemannian distance
LK , E K time-discrete length and path energy functional of order K ;

minimizers of the energy are called discrete geodesics of order K
ExpK

p , LogK
p time-discrete exponential map and logarithm of order K at p on M

distg Riemannian distance on M with respect to metric g

Surfaces

S regular surface in R3

n normal field on the surface
Sp , s

ξ
shape operator at p ∈M and its matrix representation

h, hp second fundamental form (at p ∈M), as well as its matrix
representation

F : Ω→O(3) frame field on surface S , which is parametrized overΩ
P 1, P 2 transition matrices of the frame field

Discrete Surfaces

Sh connectivity of a triangle mesh
V, E, T sets of vertices, edges, and faces of a triangle mesh
X embedding or immersion of a discrete surface, i.e. its nodal positions
S embedded or immersed discrete surface
Xv , Ee , T (τ) embedded vertex, edge, or face respectively
G|τ, H |τ, S|τ elementwise constant discrete first and second fundamental forms,

and shape operator
Nτ face normal at τ ∈ T
le , θe edge length and dihedral angle of an edge e
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x NOMENCLATURE

Physical Modeling

φ,Φ continuous respectively discrete deformation
G[φ], G[Φ] continuous respectively elementwise constant discrete distortion

tensor
W generic deformation energy
Wmem, Wbend generic membrane and bending energy
WDS

bend Discrete Shells bending energy for discrete surfaces

Lengths and Angles

z combined vector of edge lengths and dihedral angles
M[Sh] admissible lengths and angles for discrete surface Sh , also the NRIC

manifold
Z : R3|V| →R2|E| map yielding the lengths and angles Z [X ] of an immersion X
F : T → SO(3) discrete frame field on Sh

Ri j : R2|E| → SO(3) induced transition rotation between faces τi and τ j

T : R2|E| →R3|T| triangle inequality map
I : R2|E| → SO(3)|V| discrete integrability map
Q : R2|E| →R3|V| quaternion formulation of discrete integrability map
Wq quadratic deformation energy on lengths and angles

Riemannian Statistics

z̄ Riemannian center of mass
MJ J-dimensional (data approximating) submanifold
M[U J ] J-dimensional submanifold parametrized over subspace U J ⊂ Tz̄M

via the exponential map
Zσ[·], zσ[·] approximate grid-based parametrization of SPGA manifold before

resp. after projection onto M
Φζ(·) approximate neural network-based parametrization of SPGA manifold

MLPζρ[N1, . . . , NT ] a fully-connected network with layer sizes N1, . . . , NT , nonlinear
activation function ρ : R→R after each layer, and parameters ζ

Repulsive Shells

T α tangent-point energy with integrability parameter α
T α

h naïve discretization of tangent-point energy on discrete surface Sh

T α
h,η fast multipole-based adaptive discretization of tangent-point energy

V generic potential energy V : M→R≥0 on (M, g )
gV pull-back metric from graph of V over M
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j , g ,F objective, constraint, and admissible set of follower
J ,G ,U objective, constraint, and admissible set of leader
Ψ,ψ lower level solution set mapping and optimal value mapping
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(Ω,B,P) probability space
Υ random variable on (Ω,B,P)
u design parameters / triangle thicknesses
f forces
y[u, f ] elastic displacement

Phase-fields

u phase-field
Pε[·] Modica–Mortola functional
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Chapter 1

Introduction

Processing geometric shapes lies at the heart of many applied domains. In computer graphics one
considers—for example—their animation, in engineering their optimal design and elastic simula-
tion, in biomedicine their statistical analysis, and this list could be continued endlessly. Therefore,
powerful digital and mathematical tools for working with geometry are paramount for advances in
these fields. The development of such tools is the core objective of geometry processing—an emer-
gent area of research.

In many applications, shapes are represented by surfaces, i.e. curved two-dimensional objects
in three-dimensional space. Surfaces have been the object of intense mathematical studies since at
least ancient Greece. Over time, a rich theory for their topology and geometry has been developed,
which we will consider through the modern language of Riemannian geometry. This language also
extends to higher dimensional objects as we will discuss later. For computation and visualization,
numerical representations of surfaces on modern computers are essential. One extremely popular
choice is to describe them by triangle meshes called discrete surfaces under certain conditions. The
study of discrete surfaces is a central element of the active field of discrete differential geometry with
the goal to develop a comprehensive theory—similar to continuous surface theory—and computa-
tional tools for them. We will provide some necessary insights into these efforts in Chapter 2.

This thesis makes contributions to mathematical geometry and especially surface processing.
From a bird’s perspective, we will consider questions concerning shape spaces and shape optimiza-
tion. This is reflected by structuring the thesis into two corresponding parts. A common theme will
be devising nonlinear variational problems modeling the problem in question and subsequently
developing effective numerical tools for their solution.

Shape Spaces. In applications such as animation or shape analysis, we are interested in processing
multiple shapes at once and, hence, in a mathematical model for collections of shapes yielding flexi-
ble numerical tools. Kendall [Ken84] proposed to consider Riemannian shape spaces in this context,
i.e. possibly infinite-dimensional Riemannian manifolds where points are geometric objects such as
surfaces. This is closely related to the concept of moduli spaces as studied in pure mathematics of
which the Grassmannians—spaces of linear subspaces—are among the most well-known examples.
In the following, we will focus on Riemannian shape spaces and thus mostly refer to them simply
as shape spaces. They have found usage in a lot of areas of applied mathematical research such as
computational anatomy, computer graphics, shape optimization, and image processing.

In this thesis, we will consider a shape space of immersions of a discrete surface—often referred
to only as the space of discrete shells. That means we will consider a triangle mesh with fixed connec-
tivity, i.e. a fixed set of faces and edges. Then the space consists of all possibilities to realize this mesh
in three-dimensional space such that no triangle degenerates. These realizations are described by
the nodal positions of the mesh and are called discrete immersions. Crucially, this means that the

1



2 CHAPTER 1 INTRODUCTION

topology of the shape is fixed and in this shape space only its geometry varies. This assumption is
also called dense correspondence and simplifies, for example, the computation of deformations by
avoiding the necessity to compute correspondences.

On this space, we need a Riemannian structure to be useful in our applications of interest. That
means we need to assign a cost to (infinitesimal) motions on the shape space leading to a Rieman-
nian metric. One approach would be to consider the immersion as elements of some function space
and then the norm of this function space—e.g. some kind of Sobolev norm—yields a geometric way
to obtain a Riemannian metric. However, we will follow the idea of Heeren et al. [HRWW12] and
consider a physically-inspired metric. Given a discrete elastic shell energy penalizing tangential and
bending distortions, we consider the combined elastic energies of small consecutive steps along a
path on the shape space. By letting the size of these steps go to zero, we obtain a viscous model
Riemannian metric. This is also called Rayleigh’s paradigm. The resulting Riemannian shape space
with this metric is called the space of discrete shells.

It is useful for many applications in computer graphics. For example, shape interpolation can
be phrased as constructing geodesics—i.e. locally shortest paths, shape extrapolation as an applica-
tion of the Riemannian exponential map—shooting geodesics, and detail or pose transfer as parallel
transport. Moreover, it can be used to construct so-called deformation priors for editing tasks as
we will see later on. To apply this to actual data, one needs a discretization in time for these geo-
metric operations. To this end, we rely on the variational time-discretization of geodesic calculus
introduced by Rumpf and Wirth [RW15], which we will discuss in more detail in Chapter 3. It leads
to nonlinear variational problems that can be solved efficiently with numerical optimization algo-
rithms and comes with a rigorous convergence theory under time refinement. Especially, already
solutions for coarse time steps are often predictive of finer ones.

While this leads mostly to plausible and visually pleasing interpolation, it is not enough to get
an accurate model for the movement of shapes. For example, it does not represent the skeleton of
humanoid models. This limits its usage in editing applications because a point on the shape space
is not guaranteed to be a plausible deformation of a humanoid even if its distance to plausible ones
is small. This has spawned a recent interest in data-driven approaches to exploit existing databases
of shape poses to alleviate this issues. Typically, they aim at constructing subspaces of the shape
space from data such that they only contain plausible deformations of the shape. The prototypical
algorithm for this is called Principal Geodesic Analysis (PGA) and was introduced by Fletcher et al.
[FLPJ04]. Its adaptation to the space of discrete shells by Heeren et al. [HZRS18] yields high quality
results for editing tasks. However, it is computationally very expensive which restricts its applicabil-
ity in practical scenarios. Furthermore, the invariance of the approach to rigid body motions makes
its formulation in nodal positions very cumbersome. Hence, one central goal of this thesis is to
develop more efficient approaches to the construction of data approximating submanifolds of the
space of discrete shells. Our ambition is to establish methods suitable for real-time applications.

Figure 1.1: NRIC can be used to simulate isometric
paper folding (right) where nodal positions lead to
inaccurate results (left). See also Figure 4.6.

Since working in nodal positions is cum-
bersome as explained above, the first step to-
wards this is to find an alternative representa-
tion of the space of discrete shells. In Chap-
ter 4, we will introduce the so-called Nonlinear
Rotation-Invariant Coordinates (NRIC) for this
purpose which consist of the vector stacking
edge lengths and dihedral angles. They are in-
herently rigid body motion-invariant and have
a natural relation to elastic distortions. Using
discrete integrability conditions introduced by
Wang, Liu, and Tong [WLT12], we will see that
the space of immersions of a discrete surface can be represented as an implicit submanifold of an
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high-dimensional Euclidean space. This simplifies the description and computation of many geo-
metric notions. Furthermore, we will also see that NRIC are very useful to phrase and numerically
solve geometric variational problems on discrete surfaces, especially if they involve isometry con-
straints. Such a problem involving the isometric folding of a sheet of paper can be seen in Figure 1.1.

Figure 1.2: Incremental mesh editing example using our approach. See also Figure 5.1.

Based on this representation, we will propose a new method to construct submanifolds of the
space of discrete shells in Chapter 5. The principal objective is that we have an efficient parametriza-
tion of the submanifold suitable for (near) real-time applications. We recognize that we need addi-
tional structure on the submanifold to achieve this goal. Thus, we will construct the submanifold
to have a certain product structure that will stem from the sparsity and decoupling of nonlinear
modes of shape variation spanning the submanifold. Here, sparsity means that the modes of varia-
tion only affect a small region of the mesh, where ‘small’ will be crucially measured in NRIC. We will
construct these sparse modes using a modification of PGA. Then we will introduce two efficient ap-
proximate parametrizations of the submanifold, useful for mesh editing as shown in Figure 1.2. The
first will be the combination of a grid-based multilinear interpolation of the exponential map-based
parametrization of the individual factor submanifolds and an affine combination of the results. This
will already provide an efficient approximate parametrization but will be limited in the number of
dimensions it can handle. Hence, we will also adopt structural insights from this to construct an
efficient parametrization based on neural networks.

Finally, we will address one other problem restricting the plausibility of deformations: self-
intersections. All methods we have discussed so far—even the data-driven ones—are not able to
prevent them. Mathematically speaking, they only guarantee immersions and not embeddings. Even
more, there are only few shape interpolation techniques able to prevent self-intersections, which
rely on diffeomorphisms of ambient space requiring expensive discretizations. Hence, in Chapter 6,

Elastic Interpolation

Combined Interpolation

Figure 1.3: Geodesic on humanoid shape. The interpolation on the space of discrete shells (green)
leads to intersections especially visible at the timesteps in the center (marked by red ellipses). Geodesics
with respect to our metric incorporating the tangent-point energy (blue) avoid these self-intersections.



4 CHAPTER 1 INTRODUCTION

we will propose a modification of the metric on the space of discrete shells that moves shapes with
self-intersections infinitely far away from ones without. We will do so by leveraging the tangent-
point energy, a repulsive energy for which recently an efficient discretization and numerical tools
for its application in computer graphics have been introduced. Our principal insight will be that
the graph of the tangent-point energy over the space of discrete shells yields such a Riemannian
metric while retaining the appeal that geodesics provide physically-sound interpolations between
complex surfaces. This will lead to the space of repulsive shells and a geodesic on this space is shown
in Figure 1.3.

Shape Optimization. Variational problems offer a powerful way to describe and design shapes by
characterizing them as minimizers of an energy subject to constraints. These energies can be used to
describe all kinds of desired properties, for example, regarding the topology, the size, the complexity,
the mechanical properties of the shape or even its elastic behavior under mechanical load. Also the
variational problems arising from the shape space problems sketched above could be regarded as
shape optimization problems in a broad sense. However, in the second part of this thesis, we will
consider two shape optimization problems outside the framework of shape spaces and more closely
related to geometric design.

Figure 1.4: Our bilevel elastic shape optimiza-
tion approach produces symmetry-breaking mate-
rial configurations (right) ‘tricking’ the follower to
choose a worst-case force benevolent for the leader
(left). See also Figure 7.2.

Indeed, elastic behavior under load will be
of primary concern in the problem discussed in
Chapter 7. Hence, we deal with a so-called elas-
tic shape optimization problem. However, we
will not consider some predetermined finite set
of load scenarios, i.e. sets of forces applied to
the shape. Instead, we will consider the deter-
mination of a worst-case scenario. This will lead
to a hierarchical optimization problem, i.e. the
optimization of the shape depends on the op-
timization of the force which in turn depends
on the optimization of the deformation. Since
we will consider a linearized model of elastic-
ity for deformations such that the last level has
a closed form solution, we can consider our problem as a so-called bilevel optimization problem.
These problems have been introduced in and extensively investigated for economy-driven decision
making. Recently, they found their way also to other fields such as machine learning. They can be
seen as the interplay of two decision makers—a leader and a follower—whose decisions depend on
another in a certain sense. This also found some application in elastic shape optimization. Our ap-
proach will differ from this in that we will consider a so-called pessimistic problem where the lower
level is not the computation of deformations. This means it is more challenging to analyze and treat
numerically yet are more realistic. In our scenario, the leader can be imagined as a design engineer
controlling design variables of the elastic object and the follower as a test engineer trying to break
it. Furthermore, we will also consider a stochastic extension of the problem modeling manufac-
turing inaccuracies. We will develop numerical algorithms to compute solutions of these problems
and apply it as a proof-of-concept to the optimization of thickness distributions on a discrete shell
modeling roof-type structures—an example of which can be seen in Figure 1.4.

The final problem we will consider in this thesis concerns the segmentation of surfaces. That
means we will consider the optimization of the shape of segments on a (discrete) surface. Our
goal is a hierarchical segmentation of the surface into equally sized parts with minimal length of
interfaces between segments. Furthermore, we will also ask for an elastic property of the segments:
When conformally mapping the segments to the plane—i.e. pressing them flat—we want the in-
curred area distortion to be minimal. This kind of segmentation is useful for many downstream



5

applications in computer graphics and other PDE-based methods. The particular example appli-
cation we consider as proof-of-concept is texture mapping. In Chapter 8, we will use phase-fields

Figure 1.5: ‘Peeling’ a sphere using our phase-
field-based surface segmentation. See also Fig-
ure 8.6.

to describe the segments variationally. Phase-
fields represent segments as areas of constant
material—described by a scalar value—with a
smooth transition between them. They have
been widely used in image segmentation, elas-
tic shape optimization, and the analysis of free
boundary problems among other areas. How-
ever, so far, they have found no use in the com-
puter graphics or geometry processing commu-
nity. Thus, one can understand our method also

as a proof-of-concept application of phase-fields in computer graphics. To compute the distortion of
conformal flattening the segments, we adopt the approach of Sharp and Crane [SC18] and introduce
a diffuse version of the Yamabe equation used as a PDE-constraint. The resulting diffuse formula-
tion of the surface segmentation problem leads to variational problems that are straightforward to
discretize with finite elements and treat with standard algorithms for nonlinear optimization. An
exemplary solution can be seen in Figure 1.5.

Structure. As explained above, this thesis is structured into two parts: one on shape spaces and
one on shape optimization. Before going into them, we introduce useful background on surfaces,
their discrete counterparts, and shell elasticity in Chapter 2. In the part on shape spaces, we will
first provide some additional background in Chapter 3. Then we will proceed to introduce the Non-
linear Rotation-Invariant Coordinates in Chapter 4, which we will use in Chapter 5 to introduce
our efficient submanifold construction while the problem of self-intersections will be addressed
in Chapter 6. In the second part on shape optimization, we directly start with the bilevel elastic
shape optimization in Chapter 7 and conclude with the phase-field-based segmentation of surfaces
in Chapter 8. The Chapters 4, 6, 7, and 8 are mostly self-contained except for the background chap-
ters which might not be necessary for readers familiar with the field. Chapter 5 relies to some extent
on the NRIC introduced in Chapter 4.
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1.1 Related Work

1.1.1 Shape Spaces

In a variety of applied fields, shape spaces have become an important paradigm to devise methods
for processing geometric data. In this thesis, we will be particularly concerned with the space of
immersions of a discrete surface. Nevertheless, we will provide a summary of related work looking
beyond this particular shape space below. The definition of a shape space can sometimes just arise
from the way the geometry of a shape is represented. Since these representations are also important
for other problems, we will discuss them first before passing to shape spaces. Afterwards, we will
discuss works outlining how shape spaces can be used in ways relevant to the remainder of the
thesis.

Shape Coordinates. As explained above, the representation of the immersion of a surface—often
called shape coordinates—can have a dramatic effect on the effectiveness of algorithms. Therefore,
it has been an intense subject of study and we summarize some important contributions here. We
distinguish between coordinates that depend linearly and nonlinearly on the nodal positions.

The most important class of linear coordinates are so-called differential coordinates that use dis-
crete differential operators on the discrete surface to define the coordinates. For example, Yu et al.
[YZX+04] and Sumner and Popović [SP04] consider the gradient of immersions which entails solv-
ing a Poisson problem to reconstruct nodal positions. Similarly, Sorkine et al. [SCL+04] and Lipman
et al. [LSC+04] applied the Laplace–Beltrami operator to nodal positions to obtain so-called Laplace
coordinates. They also considered the explicit treatment of rigid body motions and further global
transformation. Since these coordinates depend linearly on nodal positions, linear least-squares
problem are used to compute the immersion that best matches given differential coordinates. This
makes it computationally efficient, however, shape editing using linear coordinates often yields un-
natural and distorted shapes when larger deformations are involved. This phenomenon and linear
shape coordinates in general are also discussed in the review by Botsch and Sorkine [BS08].

For continuous surfaces, the fundamental theorem of surfaces states that two immersions of a
surface to R3 differ by a rigid motion if and only if the first and second fundamental forms agree.
Furthermore, it provides integrability conditions on these fundamental forms—called the Gauß–
Codazzi equations—that guarantee the existence of corresponding immersions. Thus fundamental
forms can be seen as nonlinear shape coordinates for continuous surfaces. This motivates using dis-
crete analogs to the fundamental forms as coordinates for immersions of discrete surfaces. To this
end, Lipman et al. [LSLC05] used discrete frame fields anchored at vertices to define discrete funda-
mental forms on triangle meshes. They linearized the ensuing nonlinear problem of reconstruction
immersions at some reference shape to enable efficient mesh editing applications. Due to the lin-
earization, the quality of results typically deteriorates for strong metric distortions. Consequently,
Kircher and Garland [KG08], Baran et al. [BVGP09], Hasler et al. [HSS+09], Gao et al. [GLL+16], and
Ambellan, Zachow, and von Tycowicz [AZv19a] extended these ideas and proposed various ways to
construct discrete frame fields on triangle meshes along with corresponding approximate metric
distortions and transition rotations approximating the derivative of the surface normals. Many also
linearize the reconstruction problem and none provide discrete equivalents to the integrability con-
ditions. In contrast, Wang, Liu, and Tong [WLT12] showed that edge lengths and dihedral angles can
also be understood as equivalents of the first and second fundamental form for discrete frame fields
anchored at triangles. They develop discrete integrability conditions—akin to the Gauß–Codazzi
equations—that guarantee the existence of an immersion admitting given edge lengths and dihe-
dral angles. Already before, for example in [WDAH10; FB11], edge lengths and dihedral angles have
been used as shape coordinates in geometry processing problems. We will pick up this line of work in
Chapter 4 and show that discrete integrability conditions can be used to effectively phrase geomet-
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ric variational problems in edge lengths and dihedral angles and how they can be used to represent
the space of discrete shells as an implicit submanifold. More recently, Ambellan, Zachow, and von
Tycowicz [AZv19a] used the same transition rotations as Wang, Liu, and Tong [WLT12] and a matrix
representation of metric distortion as shape coordinates for a shape space construction applied to
medical shape analysis.

Shape Spaces. Kendall [Ken84] introduced the concept of Riemannian shape spaces as means
to analyze collection of shapes. Since then, shape spaces have proven useful for applications in
areas such as computer graphics [KMP07; HRWW12; WLX+18] and vision [XJKS14], medical imag-
ing [KKG+11; SKSC14; KXSC16; BKRB18], computational biology [LKSM14], and computational
anatomy [MTY06; KKD+11]. The textbook by Younes [You10] gives some overview of this subject
and we will discuss here some lines of work related to this thesis.

For the shape space of immersions of continuous surfaces, Kurtek et al. [KKG+11; KKD+11] in-
troduced a metric based on local area distortions of a parametrization and a corresponding explicit
construction to make this metric invariant to reparametrization and rigid body motions. Bauer,
Harms, and Michor [BHM11; BHM12c; BHM12b; BHM12a] generalized weighted L2 and Sobolev
metrics from work on spaces of curves to the space of surfaces. Concretely, it builds on work for the
space of curves summarized in [MM07], which also observed the importance of higher-order terms
in the metric. In [BHM20], this construction was extended to fractional Sobolev metrics. An alterna-
tive approach to construct a metric on the spaces of curves and surfaces was pursued by Fuchs et al.
[FJSY09], who used an linear elasticity energy on enclosed volumes to define such a metric.

The first construction for a metric on the space of immersions of a discrete surface was given
by Kilian, Mitra, and Pottmann [KMP07]. They introduced a metric measuring the change of edge
lengths and show applications of geodesics and the exponential map in computer graphics. How-
ever, this (pseudo-)metric has a significant kernel due to the lack of a term penalizing bending de-
formations, which leads to wrinkling effects and necessitated an additional regularization. Liu et
al. [LSDM10] proposed a metric measuring the change of edge length and edge direction on arbi-
trary simplicial complexes which does not have this problem. In an alternative approach, Heeren
et al. [HRWW12; HRS+14] introduced a physically-based metric reflecting viscous dissipation de-
fined from a discrete shell elasticity model via Rayleigh’s paradigm. This leads to the shape space of
discrete shells, which will be the primary shape of interest in this thesis. To this end, we will discuss
their approach in more detail in Chapter 3. Tycowicz et al. [TAMZ18] and Ambellan, Zachow, and
von Tycowicz [AZv19b] introduced shape spaces of discrete surfaces by equipping gradient-based
shape coordinates as explained above with a Lie group-structure and Ambellan, Zachow, and von
Tycowicz [AZv19a] took a similar approach for the combination of transition rotations and metric
distortions.

Other examples of shape spaces include spaces of images. Riemannian structures for this
include the flow of diffeomorphism model [DGM98] and its extension to allow image intensity
changes, the metamorphosis model [MY01; TY05a; TY05b]. The flow of diffeomorphism has recently
also been extended by Miller, Tward, and Trouvé [MTT22] to so-called image varifolds representing
functional biological data using measures. For general measures, optimal transport theory can also
be used to introduced a Riemannian structure as, for example, discussed in [PPKC10]. Wirth et al.
[WBRS09] considered a space of volumetric objects with a metric based on viscous dissipation. For
applications in shape optimization, Herzog and Loayza-Romero [HL22] equipped the space of pla-
nar triangulations with a complete Riemannian metric using an approach similar to the one we will
discuss in Chapter 6.

To compute geodesics on shape spaces, one needs to solve the so-called geodesic equation
which is a system of ordinary differential equation (ODE). This requires numerical integration tech-
niques as for example in [BMTY05] or a closed form solution which is rarely available. Wirth et al.
[WBRS09] introduced a variational time-discretization as used for Hamiltonian mechanical systems
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an alternative approach to compute geodesics. They discretize the path energy in time and mini-
mize this discretization subject to given boundary points. This was extended to a comprehensive
time-discrete geodesic calculus on shape spaces by Rumpf and Wirth [RW15], who also developed
a corresponding convergence analysis for vanishing time steps. This time-discretization has been
successfully applied to spaces of images [BER15], measures [MRSS15], viscous volumetric objects
[RW13], and—most relevant for this thesis—discrete surfaces [HRS+14]. We will give a brief intro-
duction to it in Section 3.2.

Shape Interpolation. Shape interpolation, also called shape blending or morphing, is an impor-
tant problem in geometry processing used for applications such as deformation transfer [BVGP09;
YGL+18], motion processing [PKC+16], example-based methods for shape editing [FB11], inverse
kinematics [SP04; Wam16], and material design [MTGG11].

Many approaches to shape interpolation derive from the works on shape coordinates and shape
spaces we have discussed above. When working with linear shape coordinates, typically nonlin-
ear interpolation schemes are employed. For example, the gradient-domain approach of Xu et al.
[XZWB06] extracts the rotational components from deformation gradients via polar decomposi-
tion and applies nonlinear blending operations to these components. While this helps to compen-
sate linearization artifacts, estimating local rotations that resolve large deformations is an arduous
task. Therefore, Kircher and Garland [KG08] and Gao et al. [GLL+16] introduced improved nonlin-
ear blending operations for the rotational components. Also the shape space approaches by Kilian,
Mitra, and Pottmann [KMP07] and Heeren et al. [HRWW12] yield shape interpolation schemes via
the computation of geodesics. Based on the space of discrete shells, Heeren et al. [HRS+16] also in-
troduced an approach to compute keyframe interpolations using Riemannian splines. Brandt, von
Tycowicz, and Hildebrandt [BvH16] derived a discrete curve shortening flow in shape space intro-
duced by Heeren et al. [HRS+14] and use it for efficiently processing animations of deformable ob-
jects. In contrast, for nonlinear shape coordinates, often linear blending schemes are used to com-
pensate for the cost of nonlinear reconstruction. For example, Winkler et al. [WDAH10] introduced
a scheme for shape interpolation by linearly blending edge lengths and dihedral angles. They use a
multi-scale shape matching algorithm for constructing the immersions of interpolating shapes. Al-
ternatively, Fröhlich and Botsch [FB11] modeled the process of finding the shape that best matches
the blended lengths and angles as a nonlinear least-squares optimization problem and solve it us-
ing a multi-resolution Gauß–Newton scheme. A related approach by Wuhrer et al. [WBS+10] blends
edge lengths and the normal vectors of two example shapes and constructs the intermediate shapes
using a mesh traversal algorithm based on a minimal spanning tree with dihedral angle differences
as weights. Other shape interpolations rely on discretizations of ambient space. For example, Eisen-
berger and Cremers [EC20] and Eisenberger, Lähner, and Cremers [ELC19] used eigenfunctions of
differential operators for this purpose.

Shape Statistics. Statistical shape modeling is a rich field as can, for example, be witnessed by the
review of Brunton et al. [BSBW14]. Hence, we will restrict here to discussing some relevant work
on statistical methods on Riemannian manifolds and a particular line of work dealing with sparse
modes of shape variation related to our approach in Chapter 5.

Regarding statistics on Riemannian manifold, the Riemannian center of mass [Kar77] of the
data points yields a zeroth order analysis. Pennec [Pen06] extended this to covariance measures
and higher order moments of data on Riemannian manifolds via parametrizations over the tan-
gent space. In a similar direction, Principal Geodesic Analysis (PGA) was developed by Fletcher et
al. [FLPJ04] as a generalization of Principal Component Analysis (PCA) to Riemannian manifolds.
It constructs data approximating submanifolds and has become the prototypical method for Rie-
mannian statistics. We will discuss it in more detail in Section 5.1. For example, Freifeld and Black
[FB12] used PGA on a Lie group representation of a triangle mesh to develop a statistical model of
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humanoid shapes. Close to our approach in Chapter 5, Heeren et al. [HZRS18] developed a varia-
tion of PGA for the space of discrete shells that includes careful handling of the rigid body motion
invariance. We will reformulate this in our Nonlinear Rotation-Invariant Coordinates (NRIC), which
will simplify the formulation and will allow us to consider the sparsity of variations

Regarding sparse modes of variation, Neumann et al. [NVW+13] included a sparsity inducing
term in the computation of the principal components resulting in so-called Sparse Localized De-
formation Components (SPLOCS). However, they performed the modified PCA on nodal positions
which leads to linearization artifacts for larger deformations. To counteract these artifacts, Huang
et al. [HYZ+14] represented the components in gradient-based shape coordinates and treated ro-
tational components nonlinearly. Gao et al. [GLY+21] adapted it to the coordinates proposed in
[GLL+16]. SPLOCS was formulated in the NRIC representation of meshes [WLZH17; LLW+19], which
results in an improved analysis for articulated shapes. In contrast to our approach, the NRIC repre-
sentation is treated as a linear space limiting its approximation quality for deformations outside the
dataset. To mitigate this issue, Wang et al. [WLZ+21] introduced a combination of spaces for differ-
ent parts of the mesh and a neural-network based correction of approximation error. Recently, Tan
et al. [TZY+21] also applied this sparsity concept to autoencoders.

Model Reduction. Model order reduction refers to techniques that reduce the computational cost
of numerical simulation. As such, a wide array of approaches has been developed for various ap-
plications. For example, various techniques for PDE-constrained optimization are discussed in
[BSV14]. Here, we will only discuss a few works that motivated the study of submanifold construc-
tion as presented later in the thesis.

Tycowicz et al. [TSSH13] constructed a model reduction approach for the efficient simulation of
nonlinear elastic models. They construct a linear subspace by modal analysis and efficient approx-
imation of elastic energies and their deriatives on this space by a scheme similar to [AKJ08]. This
was extended by Tycowicz et al. [TSSH15] to shape space problems particularly focusing on efficient
computation of means. Afterwards, Radziewsky et al. [RESH16] proposed a different construction
for the linear subspace approximating given example solutions. Furthermore, Brandt, von Tycow-
icz, and Hildebrandt [BvH16] used a similar construction in their discrete curve shortening flow to
achieve efficient computations. Recently, also neural network-based autoencoders are increasingly
used for model order reduction. One example of this related to the previously discussed works is
[FMD+19].

Also the Riemannian submanifold constructions above can be used as model order reduction
techniques if the submanifold has an efficient parametrization. Many of the constructions are
parametrized via the Riemannian exponential methods whose computation often entails nonlin-
ear problems. Hence, their applicability for effective model reduction is limited. Our submanifold
construction in Chapter 4 will allow for such an efficient parametrization by imposing additional
structure on the submanifold.

1.1.2 Shape Optimization

Shape optimization is a vast field of mathematical and applied studies and we will discuss here a
selection of works particularly relevant to this thesis. Azegami [Aze20] provides an introduction to
shape optimization problems in general considering mathematical and applied perspectives.

Bilevel Shape Optimization. Bilevel optimization originates from work by Stackelberg [Sta34] on
market structures. The first mathematical formalization of this idea was developed by Bracken and
McGill [BM73] and has since been mainly used in economy-driven decision making and, recently,
an increasing number of other areas. Among the many applications of bilevel optimization, there
are some works that study applications in the context of elastic shape optimization. For example,
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Herskovits et al. [HLDS00] investigated the design of an elastic object, where contact to a rigid ob-
stacle supporting the object is only possible at certain parts of the domain. Kočvara and Outrata
[KO95; Koč97] considered a model to optimize the design parameters of a truss structure where the
follower problem amounts to computing the displacement under loads. Zuo [Zuo15] investigated
an optimistic bilevel problem for car design, where design parameters are optimized on both levels:
on the lower level, the mass distribution along the body frame and, on the upper level, the shape of
shell segments of the hull.

The stochastic extension of bilevel optimization was first formulated in its optimistic version
by Patriksson and Wynter [PW99]. They were further studied, for example, by Burtscheidt, Claus,
and Dempe [BCD20], who consider stochastic linear bilevel problems primarily in the optimistic
regime but their results also extend to the pessimistic regime. Christiansen, Patriksson, and Wyn-
ter [CPW01] and Martíinez-Frutos et al. [MHKP18] applied this to stochastic optimization of elastic
structures using a truss respectively a level set model. However, all these applications to elastic shape
optimization are either a so-called optimistic formulation or consider the problem of determining
displacements under given forces as the lower-level problem using a linear elastic model, which
means that it has a unique solution. In contrast, the follower will play the role of a test engineer in
Chapter 7 and optimize the forces applied to an elastic structure, which leads to a more involved
optimization problem.

For a more detailed overview of possible applications of bilevel optimization and its stochastic
extensions, we refer to the review by Sinha, Malo, and Deb [SMD18].

Phase-fields. The diffuse model of phase-fields has a long history ranging back to late 19th century
(cf. [Row79]) with important contributions by Cahn, Hilliard, and Allen [CH58; AC72] in the middle
of the 20th century, who developed the model in a modern language. They can be used to describe
the segmentation via a smooth function that intuitively models the mixture of two materials. Mod-
ica and Mortola [MM77] rigorously investigated the behavior of these models for vanishing inter-
face width, which results in a Γ-convergence result of the so-called Modica–Mortola-functional to
the interface length. Due to the Γ-convergence result, phase-fields yield an effective approximation
of the perimeter, which has been used extensively for image segmentation [BCM04], approximat-
ing motion by mean curvature [DF20], shape optimization [BC03], simulation of material processes
[Che03], and many other applications.

Phase-fields—or comparable diffuse interface models—on surfaces have already been used, for
example, by Hornung, Rumpf, and Simon [HRS20] who used phase-fields to diffusely represent hard
and soft material on the surface and optimize their distribution. Dziuk and Elliott [DE13] considered
the Allen–Cahn equation for the approximation of motion by mean curvature using phase-fields on
surfaces as one example for a surface finite element method. Du, Ju, and Tian [DJT11] and Elliott and
Ranner [ER15] studied the Cahn–Hilliard equation on (evolving) surfaces and its numerical approxi-
mation using finite elements. Zayer et al. [ZMSS19] and Stadlbauer et al. [SMS+20] used a diffuse
representation to compute Voronoi-type diagrams by growing segments from given start points.
Even more general, Bertozzi and Flenner [BF12] used phase-field models on arbitrary graphs and
combine perimeter minimization with data-based fitting terms to address classification problems
and developed a comprehensive theory for this in follow-up work.

Mesh Segmentation. Most approaches to mesh segmentation are concerned with splitting or cut-
ting the mesh along its edges. However, computing exact minimizers for even basic task such as
finding the shortest cuts to obtain a topological disk [EH04] or a partition into equally-sized convex
parts with minimal interface [CDST97] are NP-hard. Hence, approximate solutions and algorithms
to compute them are investigated.

With respect to atlas generation and related applications, curvature-based objectives have been
used to compute segmentations. For example, Yamauchi et al. [YGZS05] optimized for an even dis-
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tribution of Gauß curvature among the segments while Julius, Kraevoy, and Sheffer [JKS05] optimize
the fit of conics to segments. Both use their objectives as proxy for developability. In contrast, Lien
and Amato [LA07] and Mamou and Ghorbel [MG09] computed decomposition into approximately
convex parts by measuring the distance between them and their convex hull.

A very popular approach to the hierarchical segmentation of meshes was introduced by Gar-
land, Willmott, and Heckbert [GWH01], who hierarchically cluster the faces of a mesh by edge con-
tractions in the dual graph using the planarity of resulting clusters as primary criterion. Attene,
Falcidieno, and Spagnuolo [AFS06] extended this by taking into account how well clusters can be
approximated by certain geometric primitives (e.g. planes or cylinders). Furthermore, Katz and
Tal [KT03] used a probabilistic formulation and combine this with a recursive approach. Lai et al.
[LZHM06] used a similar approach, but add semantic objectives based on the change in texture and
use a Lloyd’s-type clustering algorithm.

Cutting and Flattening. For problems such as texture mapping, parametrizations of the surface
with low area distortion are of great interest. This motivates the study of algorithms to cut and
flatten—i.e. parametrize—surfaces. Many of the curvature-based segmentation methods listed
above draw their inspiration from this problem. Zhou et al. [ZSGS04] used nonlinear dimensionality
reduction methods based on spectral analysis as initialization for a nonlinear optimization of the
charts. Other approaches focus on placing special vertices, e.g. cone singularities, and then connect-
ing them with cuts. To reduce the distortion, some place them via a greedy ansatz [SSP08; BGB08;
ZYCF20], while others follow a global shape optimization technique [SSC18]. Departing from greedy
approaches and other heuristics, Poranne et al. [PTH+17] and Li et al. [LKK+19] computed patches
that minimize the associated distortion. To this end, they explicitly compute the parametrization
of different patches and simultaneously optimize their distortion and boundaries. Going further,
Sharp and Crane [SC18] used the Yamabe equation to compute the lowest possible distortion and
thus circumvent the need to compute parametrizations during the optimization. To optimize over
surface patches to be flattened, they use a level set approach to describe the shape of the patches
and solve the shape optimization problem of minimal distortion. In particular, they allow cuts not
aligned with triangle edges. We will follow a similar approach using phase-fields.
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1.2 Collaborations and Publications

The work presented in this thesis is the result of many fruitful collaborations and has been partially
published in a set of joint publications:

The results on nonlinear shape coordinates presented in Chapter 4 are joint work with Behrend
Heeren, Klaus Hildebrandt (TU Delft), and Martin Rumpf. They were published in [SHHR20] while
some preliminary results were already published in [SHHR19]. I contributed to developing a rep-
resentation of the space of discrete surfaces as an implicit submanifold via the discrete integrabil-
ity conditions and investigated as well as implemented efficient numerical methods for variational
problems phrased in this representation.

The work on the construction of data approximating submanifolds of the space of discrete shells
is the result of a collaboration with Klaus Hildebrandt (TU Delft), and Martin Rumpf published
in [SHR20]. The network-based parametrization is additionally the result of joint work with also
Benedikt Wirth (University of Münster) and published in [SHWR23]. I contributed to the modifica-
tion of Principal Geodesic Analysis to obtain sparse modes, the approach to equipping the result-
ing submanifold with a product structure, the grid-based approximation of the exponential map on
these factors, and the numerical methods for the approach. Furthermore, I worked on the struc-
tural observations for the neural network-based parametrization and its implementation along with
conducting the corresponding numerical experiments.

The work on constructing a metric for the space of discrete shells guaranteeing embeddings as
presented in Chapter 6 is joint work with Keenan Crane (Carnegie Mellon University), Martin Rumpf,
and Henrik Schumacher (TU Chemnitz) that was not published so far. Preliminary results appeared
in the non-peer-reviewed report [Sas22]. I contributed to the construction of the metric, the appli-
cation of the variational time-discretization to the resulting shape space, and the formulation and
implementation of numerical optimization methods for the resulting nonlinear problems. The em-
ployed discretization of the tangent-point energy was primarily developed by H. Schumacher and
thus we will only give an overview of this for the sake of completeness.

The application of bilevel optimization in the context of elastic shape optimization presented
in Chapter 7 is the result of joint work with Johanna Burtscheid (University of Duisburg-Essen),
Matthias Claus (University of Duisburg-Essen), Sergio Conti, Martin Rumpf, and Rüdiger Schultz
(University of Duisburg-Essen) published in [BCC+21]. I contributed to the mathematical modeling
of the bilevel shape optimization and its application to discrete shells, developed and implemented
the numerical optimization approach, and performed the numerical experiments using it. The exis-
tence results for the bilevel problems are primarily the work of J. Burtscheid, M. Claus, S. Conti, and
R. Schultz and as such only a summary of them will be presented in this thesis.

The investigation of a phase-field model for surface segmentation in Chapter 8 is joint work with
Janos Meny and Martin Rumpf that was published in [MRS21]. I contributed to the mathematical
modeling of the segmentation problem, the diffuse adaption of the Yamabe equation, and to their
discretization. Notably, J. Meny implemented the method and performed the numerical experi-
ments. Nevertheless, we will report on them in this thesis to give practical insights into the method.

Moreover, I contributed to two further publications, that are not considered in this thesis:

• Sandrine H. Künzel, Moritz Lindner, Josua Sassen, Philipp T. Möller, Lukas Goerdt, Matthias
Schmid, Steffen Schmitz-Valckenberg, Frank G. Holz, Monika Fleckenstein, and Maximilian
Pfau. “Association of Reading Performance in Geographic Atrophy Secondary to Age-Related
Macular Degeneration With Visual Function and Structural Biomarkers”. In: JAMA Ophthal-
mology 139.11 (2021), pp. 1191–1199. ISSN: 2168-6165. DOI: 10.1001/jamaophthalmol.
2021.3826

• Florine Hartwig, Josua Sassen, Omri Azencot, Martin Rumpf, and Mirela Ben-Chen. “An Elas-
tic Basis for Spectral Shape Correspondence”. under review. 2023

https://doi.org/10.1001/jamaophthalmol.2021.3826
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Chapter 2

Surfaces and Elasticity

In this chapter, we will provide the necessary foundations in surface theory, discrete differential
geometry, and elasticity necessary for the remainder of the thesis. The goal is that, at the end of
the chapter, the reader is equipped with all the notation and key ideas from these fields that will
be used afterwards. To this end, these notions will be presented in a very condensed fashion and
accompanied with pointers to more comprehensive introductions. A similar chapter was also part
of [Sas19].

2.1 Differential Geometry of Surfaces

In this section, we will briefly introduce the necessary properties of embedded surfaces, i.e. two-
dimensional manifolds S ⊂ R3. As it is sufficient for this thesis, we will only consider a parametric
description of surfaces as defined in the following. This introduction is kept very brief and is based
on [Hee17; Car76], to which we also refer for further reading. We begin with the basic definitions of
a surface and its tangent space.

Definition 2.1 (Regular surface). The set S ⊂R3 is a regular surface if for each p ∈S there is an ε> 0,
an open setΩ⊂R2, and a smooth mapping ψ : Ω→R3, such that

(i) ψ(Ω) =S∩Bε(p) and ψ : Ω→S∩Bε(p) is a homeomorphism.

(ii) The Jacobi matrix Dξψ ∈R3×2 has rank two for each ξ ∈Ω.

Definition 2.2 (Tangent space). Let S ⊂ R3 be a regular surface, and let p ∈ S . Then we define the
tangent space at p

TpS := { γ̇(0) |γ : (−1,1) →S smooth, γ(0) = p}.

Elements of this space are called tangent vectors.

One can see that TpS is a two-dimensional vector space. Let us now consider a parametriza-
tion ψ : Ω→ R3 of S , for which we let ξ ∈ Ω and p = ψ(ξ) ∈ S . If we then consider a smooth curve
α : (−1,1) →Ωwith α(0) = ξ and γα :=ψ◦α, we have γ̇α(0) = Dξψα̇(0) and get

TpS = ImDξψ= span{∂ξ1ψ(ξ),∂ξ2ψ(ξ)} .

This basis of the tangent space is called the canonical basis.

13
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Differentiation. For a smooth function ϕ : S → R and p ∈ S , we define the differential Dpϕ as a
linear form acting on tangent vectors V ∈ TpS as directional derivative, i.e.

Dpϕ(V ) := d

d t
ϕ(γ(t ))

∣∣∣
t=0

for an arbitrary curve γ : (−1,1) → S with γ(0) = p and γ̇(0) = V . For a vector-valued deformation
φ : S → R3 the definition above holds for each component of φ = (φ1,φ2,φ3). In particular, Dpφ

defines a linear map between the tangent spaces, i.e.

Dpφ : TpS → Tφ(p)φ(S) .

2.1.1 Fundamental Forms

In the following, we will introduce the structure of a Riemannian manifold on the surface, which we
will be discussed in more generality in Chapter 3.

Definition 2.3 (First fundamental form). The first fundamental form in p ∈S is given by

gp : TpS×TpS →R, (U ,V ) 7→ 〈U ,V 〉R3 .

We see that gp is a scalar product on the linear space TpS and thus we can consider its matrix
representation in the canonical basis, which by abuse of notation we also denote as gp . It is given by

gp =
(
〈∂ξiψ(ξ),∂ξ jψ(ξ)〉R3

)
i j
∈R2×2,

where p =ψ(ξ).

This matrix is invertible because it is positive definite by assumption and we denote the coeffi-
cients of the inverse by superscript indices, i.e.

g−1
p = (g i j )i j ∈R2×2.

As scalar product, gp allows us to measure then lengths of tangent vectors and the angle between
two of them. We can use this to measure the lengths of curves on the surface.

Definition 2.4 (Length of a curve). Letα : (−1,1) →Ω and γα :=ψ◦α, then the length of γα is defined
as its integrated velocity

L[γα] :=
∫ 1

−1
|γ̇α(t )|dt =

∫ 1

−1

√〈Dψα̇(t ),Dψα̇(t )〉R3 dt

=
∫ 1

−1

√
〈DψT Dψα̇(t ), α̇(t )〉R3 dt ,

where we write Dψ= Dα(t )ψ to shorten the expression.

This way we can also define arbitrary integrals on the surface for some function ϕ : S →R by∫
A
ϕda :=

∫
ψ−1(A)

(ϕ◦ψ)(ξ)
√

det gξdξ .
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Second fundamental form. The first fundamental form allows us to study objects that live on the
surface. Moreover, we are also interested in studying how the surface S is bent, i.e. its curvature. To
this end, we have to introduce some more definitions, especially another bilinear form called the
second fundamental form.

Definition 2.5 (Normal field). Let S2 ⊂R3 be the 2-dimensional unit sphere. The (unit) normal field
of S is a mapping n : S → S2 with n(p) ⊥ TpS for all p ∈ S . We say that S is orientable if there is a
continuous normal field. In particular, as rank(Dψ) = 2, we will write

n(p) = (n ◦ψ)(ξ) = ∂1ψ×∂2ψ

|∂1ψ×∂2ψ| (ξ) .

Definition 2.6 (Shape operator). Let S ⊂ R3 be a regular and orientable surface, p ∈ S . The shape
operator Sp : TpS → TpS at p is the linear mapping defined via Sp (U ) = Dp n(U ) for U ∈ TpS .

Remark. As Tn(p)S2 = n(p)⊥ = TpS the shape operator Sp is indeed an endomorphism on TpS .

Definition 2.7 (Second fundamental form). Let S ⊂ R3 be a regular and orientable surface, and p ∈
S . The second fundamental form hp is the bilinear form on TpS associated with Sp , i.e.

hp (U ,V ) := gp (SpU ,V ) , U ,V ∈ TpS .

We will exploit this bilinear form to define different notions of curvature of a surface. Again, we
can derive a matrix representation in the canonical basis, which by abuse of notation we also denote
as hp . As before, this is achieved by pulling back hp to R2 using Dξψ. It is given by

hp = Dξ(n ◦ψ)T Dξψ ∈R2×2,

where ψ(ξ) = p. In the following, the explicit dependence on the point p of the fundamental forms
will typically be dropped when it is clear which point we are considering.

One can see, that the second fundamental form is symmetric, i.e. that Sp is self-adjoint with
respect to the first fundamental form gp . This means that we can diagonalize Sp as a linear map
with an orthonormal basis and thus it has two real eigenvalues. These eigenvalues now allow us to
define different notions of curvature.

Definition 2.8 (Curvatures). The eigenvalues κ1 and κ2 of Sp are called the principal curvatures of S
at a point p ∈ S . The mean curvature in p is defined as the sum Hp := trSp = κ1 +κ2 and the Gauß´
curvature in p is defined as the product Kp := detSp = κ1κ2.

To define a physically-plausible model for the deformations we need to measure the bending of
surfaces under deformation. Bending corresponds to a change of the second fundamental form or
shape operator, which is captured by the following definitions.

Definition 2.9 (Pulled-back shape operator). The pulled-back shape operator
S∗

p [φ] : TpS → TpS is given by

gp

(
S∗

p [φ]U , V
)
= hφ(p)

(
DpφU , DpφV

)
, ∀U ,V ∈ TpS . (2.1)

Definition 2.10 (Relative shape operator). The relative shape operator Srel
p [φ] is defined as the point-

wise difference, i.e.

Srel
p [φ] : TpS → TpS , Srel

p [φ] := Sp −S∗
p [φ] . (2.2)
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Again, we obtain matrix representations in the canonical basis s∗
ξ

[φ] ∈ R2×2 and srel
ξ

[φ] ∈ R2×2 of

S∗
p [φ] and Srel

p [φ], respectively, which are given by

s∗ξ [φ] = g−1
ξ h̃ξ , srel

ξ [φ] = sξ− s∗ξ [φ] = g−1
ξ (hξ− h̃ξ) . (2.3)

In the physical modeling of surface deformations later on, we will ask for a criterion when two
surfaces will be congruent, i.e. only differ by a rigid transformation. Furthermore, we will also desire
a way to parametrize surfaces up to rigid body motions. In this section, we will see that the funda-
mental forms determine when two surfaces are congruent and that if we define fundamental forms
fulfilling certain compatibility conditions there will be a surface in R3 admitting them. This will con-
stitute the fundamental theorem of surfaces. The exposition below is completely based on [Küh15]
and [Pal03]. Again we will work only locally, i.e. assume that we have global parametrizations ψ of
our surfaces. We start with a simple definition.

Definition 2.11 (Standard frame). Let S be a regular surface with parametrization ψ : Ω→ R3, then
at each coordinate ξ ∈Ωwe define the standard frame at ξ by

F (ξ) = (F1(ξ),F2(ξ),F3(ξ)) := (∂1ψ(ξ),∂2ψ(ξ), (n ◦ψ)(ξ)). (2.4)

This yields a matrix-valued map F : Ω→ O(3) called a frame field, where we consider the different
components as rows.

Note, that F (ξ) is a basis of R3 and thus we can express each vector of R3 in it. Especially, we can
apply this to the derivatives of F itself, i.e. determine coefficients P k

j i such that

∂k F j (ξ) =
2∑

i=1
P k

j i (ξ)Fi (ξ). (2.5)

The P k
j i define two matrices P k , k = 1,2 and we can write this as a pair of equations of matrix-valued

functions

∂1F = F P 1 (2.6a)

∂2F = F P 2, (2.6b)

which are called the frame equations for S .
In the following, we will see that the transition matrices P k can be calculated from the coeffi-

cients of the first and second fundamental form. Then we can consider the frame equations as a
coupled pair of first-order partial differential equations for the frame field F , and it will follow from
Frobenius’ theorem that we can solve these equations and then by another integration recover the
surface parametrization ψ. We start with the first part.

Proposition 2.12 ([Pal03]). Let S be a regular surface with parametrization ψ : Ω→ R3, and P 1,P 2

the transition matrices as defined above. Then

P 1 =G−1 A1 :=
g 11 g 12 0

g 21 g 22 0
0 0 1

 1
2 ∂ξ1 g11

1
2 ∂ξ2 g11 h11

∂ξ2 g12 − 1
2 ∂ξ1 g11

1
2∂1g22 h12

−h11 −h12 0

 (2.7a)

P 2 =G−1 A2 :=
g 11 g 12 0

g 21 g 22 0
0 0 1

1
2 ∂2g11 ∂2g12 − 1

2 ∂1g22 h12
1
2∂1g22

1
2∂2g22 h22

−h12 −h22 0

 . (2.7b)

The proof essentially requires a careful calculation. In the following, we will consider the matrix-
valued functions G ,G−1, Ak , and P k as being defined by the formulas in the proposition above. From
this, we can deduce necessary conditions on the coefficients on the first and second fundamental
form to stem from a regular surface.
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Corollary 2.13 (Gauß–Codazzi Equations, [Pal03]). If (gi j ) and (hi j ) are the coefficients of the first
and second fundamental forms of a regular surface S with parametrization ψ : Ω → S , then the
matrix-valued functions P 1 and P 2 defined onΩ by Proposition 2.12 satisfy

∂2P 1 −∂1P 2 = P 1P 2 −P 2P 1. (2.8)

This again follows from a straightforward calculation. Next, we see that the Gauß–Codazzi equa-
tions are in fact sufficient conditions on the coefficients of the first and second fundamental form
to stem from a surface. Hence, one has to show that just given the coefficients we can construct a
surface with those fundamental forms unique up to rigid body motions.

Theorem 2.14 (Fundamental Theorem of Surfaces, [Pal03]). Congruent regular surfaces in R3 have
the same first and second fundamental form and conversely, two parametric surfaces with the same
first and second fundamental forms are congruent.

Moreover, if g : Ω→ R2×2, and h : Ω→ R2×2 are C 2 quadratic forms on an open and connected
domainΩ⊂R2 fulfilling the Gauß–Codazzi equations, then there exists a regular surface ψ : Ω→S ⊂
R3 with g and h as (matrix representations of) first and second fundamental form.

The principal idea of the proof is that the Gauß–Codazzi equations are exactly the integrability
conditions of the Frobenius’ theorem, which allows us to integrated the local change of geometry
encoded by the fundamental forms to obtain a regular surface.

2.2 Discrete Surfaces

In this section, we will study discrete surfaces, a certain class of polygonal meshes. These are the ob-
jects of central interest in this thesis and we want to transfer the differential and geometric notions
from continuous surfaces to them. However, they required the surface to be sufficiently smooth
while polygonal meshes are piecewise affine. In discrete differential geometry (DDG), one aims to
introduce discrete equivalents to these notion allowing to compute approximations of a smooth sur-
face’s properties. In this section, we will provide a formal definition for discrete surfaces and briefly
introduce several geometric notions. As before, this chapter is not meant to provide a complete in-
troduction to DDG. For this, we refer the reader to existing literature such as [Hee17; CdDS13] on
which this section is based.

Topology. The connectivity Sh of a triangle mesh can be represented as a graph structure. We have
a finite set of vertices V = {v1, . . . , v|V|} and a set of triangle faces T = {τ1, . . . ,τ|T|} ⊂ V×V×V. From
these two, we can furthermore deduce a set of edges E = {e1, . . . ,e|E|} ⊂ V×V. Note, that we could
equivalently deduce the set of faces T from the set of edges E and all further structural properties of
the mesh can be derived from them. We will now derive a topology for the mesh solely based on this
connectivity. We begin with introducing the topological notions that correspond to our connectivity.

Definition 2.15 (Abstract simplicial complex). An abstract simplicial complex K consists of a set of
vertices V together with a set ∆ of finite non-empty subsets of V, called simplices, such that

1. if σ ∈∆ and ; ̸= τ⊂σ then τ ∈∆, and

2. for every v ∈ V we have {v} ∈∆.

We call a σ ∈ ∆ with d + 1 elements a d-simplex. The dimension of K is the largest d such that it
contains a d-simplex.
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Such an abstract simplicial complex provides a combinatorial way of describing the structure
of a simplicial complex. It is basically a construction plan for the ‘gluing’ of simplices to form a
simplicial complex. Note, that giving the connectivity Sh = (V,E,T) of a triangle mesh is equivalent
to giving a set of vertices V and a set of simplices ∆ consisting of the vertices, edges and triangles,
hence by abuse of notation we refer by Sh to both. Now that we have the combinatorial structure of
a simplicial complex, we will associate to it a topological space.

Definition 2.16 (Geometric realization). Let K be an abstract simplicial complex with finitely many
vertices V = {v1, . . . , v|V|}. Then we define the geometric realization |K| of K as the set⋃

{vi1 ,...,viK }∈∆
Conv(ei1 , . . . ,eiK ) ⊂R|V| (2.9)

together with subspace topology given by R|V|.

In the following, we will by abuse of notion often refer to the connectivity Sh of a triangle mesh
as a topological space, by which we mean exactly this geometric realization even though we might
not explicitly use the notation |Sh |. If we have a valid triangle mesh, i.e. without self-intersections
etc., then it is homeomorphic to the geometric realization of the simplicial complex.

Lastly, we have ensure sufficient regularity of the topological space to get to the notion of a dis-
crete surface. Note, that the following definition is equivalent to the one used for example by Des-
brun, Kanso, and Tong [DKT08], just derived in a more abstract fashion.

Definition 2.17 (Discrete surface). A discrete surface or two-dimensional discrete manifold Sh is an
abstract simplicial 2-complex, such that in its geometric realization for each vertex the union of all
incident simplices is homeomorphic to a disk or a half-disk if the vertex is on the boundary.

Orientation. The order of the local indices of nodes within one face determines the orientation of
the face and hence of the discrete surface. In the following, only orientable (discrete) surfaces will
be considered, and thus we will implicitly assume that indices are ordered consistently.

Geometry. So far, we have studied the underlying topology of a triangle mesh, yet in practice, of
course, we work with geometric realizations of this topology in three-dimensional space. Hence, we
consider these next.

Definition 2.18 (Embedding). LetSh be a discrete surface. An embedding ofSh is an injective piece-
wise linear map X : |Sh | → R3 such that it is an homeomorphism onto its image. We call a discrete
surface together with an embedding an embedded discrete surface S.

We will not always be able to only consider embeddings of a discrete surface due to their global
injectiveness. In fact, ensuring embeddedness will be one of the principal goals of Chapter 6. There-
fore, we also consider immersions of discrete surfaces, which replace this global condition by a local
one allowing self-intersection of the surface as long as for each vertex a neighborhood is embedded.

Definition 2.19 (Immersion). Let Sh be a discrete surface. An immersion of Sh is a piecewise linear
map X : |Sh | → R3 such that it is a local injection for each one-ring of faces around a vertex, and
thus a local homeomorphism. We call a discrete surface together with an immersion an immersed
discrete surface S.

As the embedding or immersion X is piecewise linear it is uniquely determined by its restriction
to the vertices X |V. To simplify formulas, we denote for v ∈ V by Xv the image of v and if we have
an enumeration of V we denote for i ∈ N by Xi the image of vi . We denote the image X (e) of an
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edge e ∈ E by Ee , or again if we have an enumeration by Ei the image of ei . If we consider a face
τ= (vi0 , vi1 , vi2 ) ∈ T, we denote the embedded triangle by

T (τ) = Conv
(
Xi0 , Xi1 , Xi2

)⊂R2.

Furthermore, we define X j (τ) := X (vi j ) and

E j (τ) := X j−1(τ)−X j+1(τ)

for j ∈ {0,1,2}, where in the last equation the indices are to be read modulo 3.
In this thesis, we will also use other maps defined on the different elements of such a mesh,

which can be written as vectors. For example, a map w : V → Rk assigning each vertex a value in
this section corresponds to a vector Rk|V| and similarly for functions defined on edges and faces.
We denote evaluations w(v) of such a map also via indexing to simplify notation, i.e. wv := w(v) ∈
Rk . This notation will allow us to directly write down products of such maps with matrices, which
correspond to linear operators from the function point-of-view.

Parametrization. In Section 2.1, we gave formulas for many objects in terms of a (local) parametri-
zation of the surface. Now, for an embedded triangle of a discrete surface, we can easily derive a local
parametrization, as well. For this, we consider the unit triangle in R2

ω := Conv

((
0
0

)
,

(
1
0

)
,

(
0
1

))
⊂R2

as reference domain. Then we get our local parametrization as the affine mapping

Ψτ : ω→ T (τ), (ξ1,ξ2) 7→ ξ1X1(τ)+ξ2X2(τ)+ (1−ξ1 −ξ2)X0(τ)

for the baraycentric coordinates ξ ∈ω. We can collect all these local parametrization into one global
map on the reference domainΩh =ω×T

Ψ : Ωh → X (Sh), (ξ,τ) 7→Ψτ(ξ)

and by abuse of notation call this a global parametrization of the immersed discrete surface. Later
on, we will drop the explicit dependence on τ and useΨwhenever possible to simplify our notation.

2.2.1 Fundamental Forms

In Section 2.1, the first and second fundamental form where crucial tools for understanding the
geometry of differentiable surfaces. Hence, we will introduce their discrete counterparts in this sec-
tion.

Discrete first fundamental form. Remember that for an regular embedded surfaceS ⊂R3 with (lo-
cal) parametrization ψ, we can represent the first fundamental form by g = Dψ⊺Dψ. Furthermore,
the local parametrization Ψ of an immersed discrete surface is affine, thus its derivative is constant
on each triangle τ ∈ T and given by

DΨ|τ =
(
∂Ψτ

∂ξ1
,
∂Ψτ

∂ξ2

)
=

[
X1(τ)−X0(τ)

∣∣∣ X2(τ)−X0(τ)
]

(2.10)

=
[

E2(τ)
∣∣∣ −E1(τ)

]
∈R3×2 . (2.11)

From this the definition of a discrete first fundamental form follows as
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Definition 2.20 (Discrete first fundamental form). Let Sh be a discrete surface with immersion X .
The elementwise constant discrete first fundamental form is given by

G|τ := (DΨ|τ)⊺DΨ|τ =
( ∥E2(τ)∥2 −〈E1(τ),E2(τ)〉
−〈E1(τ),E2(τ)〉 ∥E1(τ)∥2

)
∈R2×2 (2.12)

for each τ ∈ T.

Discrete second fundamental form. We also need a discrete counterpart of the second funda-
mental form to be able to talk about extrinsic invariants of discrete surfaces. To this end, we will
present a triangle-averaged discrete second fundamental form H introduced in [HRWW12]. Com-
bining these, two we can derive a matrix representation of a shape operator living on triangles by
setting S|τ :=G|−1

τ H |τ ∈R2×2.
First, we need to introduce some basic geometric notions.

Definition 2.21 (Normals). For an immersed discrete surface S, we define the face normal Nτ ∈ S2

on the face τ= (vi0 , vi1 , vi2 ) ∈ T by

Nτ := (Xi1 −Xi0 )× (Xi2 −Xi0 )

∥(Xi1 −Xi0 )× (Xi2 −Xi0 )∥ . (2.13)

Furthermore, for a vertex v , we define a vertex normal as

Nv :=
∑
τ∈Nv

Nτ

∥∑τ∈Nv
Nτ∥

, (2.14)

for the faces adjacent to the vertex Nv .

Definition 2.22 (Dihedral angle). For an immersed discrete surface S, we define the dihedral angle
of an edge e with adjacent faces τl and τr as

θe :=
{

arccos(Nτl ·Nτr ) if 〈Nτl ×Nτr ,E〉R3 > 0

−arccos(Nτl ·Nτr ) else,
(2.15)

where, as before, E denotes the embedded edge shared by the triangles.

Now, combining Definition 2.7 and (2.10) with observations from discrete exterior calculus (cf.
[DKT08]) one can establish the following definition of a triangle-averaged second fundamental form.

Definition 2.23 (Discrete second fundamental form, [Hee16]). Let Sh be a discrete surface with im-
mersion X . The elementwise constant triangle-averaged discrete second fundamental form is given
by

H |τ =−4aτ
2∑

i=0

cos θi+π
2

∥Ei∥
Mi (2.16)

for each τ ∈ T, where (M0, M1, M2) is the basis of symmetric 2×2-matrices given by

M0 =
(

1 1
1 1

)
, M1 =

(
1 0
0 0

)
, M2 =

(
0 0
0 1

)
. (2.17)

This is one possible choice of discrete second fundamental form, proposed by Wardetzky in un-
published work and elaborated by Heeren [Hee16], which is particularly suitable for our applications
while other choices do exist. Lastly, we can use both triangle-based discrete fundamental forms to
define a discrete notion of the shape operator.
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Definition 2.24 (Discrete shape operator, [Hee16]). Let Sh be a discrete surface with immersion X .
The elementwise constant triangle-averaged discrete shape operator is given by

S|τ =G|−1
τ H |τ (2.18)

for each τ ∈ T.

Remark (Curvature). In the continuous case, we have derived different notions of the surface’s cur-
vature from the eigenvalues of the shape operator. We can define corresponding discrete notions
of curvature the same way using the triangle-averaged shape operator. Especially, we can define a
triangle-averaged mean curvature trS|τ with explicit formula

trS|τ =−
2∑

i=0

cos θi+π
2

aτ
∥Ei∥. (2.19)

However, we typically do not use the determinant of the triangle-averaged discrete shape oper-
ator as Gauß curvature, as it is more naturally associated with vertices. That means for some area
Av associated with some vertex v ∈ V one defines an integrated Gauß curvature by the so-called
angle-defect, i.e. ∫

Av

Kh(x)da := 2π− ∑
τ:v∈τ

γτ,v , (2.20)

where γτ,v denotes the interior triangle angle in τ at vertex v . One verifies immediately a discrete
Gauß–Bonnet theorem, by computing∫

Sh

Kh(x)da = ∑
v∈V

∫
Av

Kh(x)da = 2π|V|− ∑
v∈V

∑
τ:v∈τ

γτ

= 2π (|V|− 1

2
|T|) = 2π (|V|+ |T|− |E|),

which justifies the vertex-based definition of the Gauß curvature, see also [CM03].

2.3 From Nonlinear Elasticity to Discrete Shells

Our goal is to study deformations of discrete surfaces and their applications. In many of those,
for instance, animation movies, the discrete surfaces represent complex shapes such as the skin
of characters and the deformations are supposed to model natural motions. To create such, we need
a physically plausible model for the deformation behavior of discrete surfaces.

We will go one step back to continuous surfaces and present the model developed within this
context by Heeren et al. [HRWW12; HRS+14] and Heeren [Hee16]. It starts with the assumption that
the surfaces represent thin shells, three-dimensional solids with a high ratio from width to thickness.
To derive two-dimensional models from this one starts with three-dimensional elasticity and inves-
tigates deformation energies of solidsΩδ ⊂R3 with δ being a tiny but finite thickness of the material,
and then considers the limit δ→ 0 based on the notion of Γ-convergence. Qualitative insights from
the mathematical rigorous study of this limit in [LR95; LR96; FJM02; FJMM03] were then used to
define a generic thin shell model.

Elasticity. We begin with introducing our notation for three-dimensional elasticity based on
[Hee17]. Let O ⊂R3 be a solid object with boundary andφ ∈W 1,2(O;R3) a potentially large and non-
linear deformation. We assume thatφ is orientation preserving—i.e. detDφ(x) > 0 for all x ∈O—and
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injective. We then postulate that we have an hyperelastic material with a deformation energy given
as integral of an elastic energy density W , i.e.

W[φ,O] =
∫
O

W (Dφ)dx. (2.21)

A fundamental axiom of continuum mechanics is the frame indifference of W , i.e. we have W (Dφ) =
W (Q⊺DφQ) for all Q ∈ SO(3), furthermore we assume O to be isotropic, i.e. W (Dφ) = W (DφQ) for
all Q ∈ SO(3). From these two assumptions, it follows by the Rivlin-Ericksen-Theorem [RE55] that
the energy density only depends on ∥Dφ∥F ,∥cofDφ∥F , and detDφ. Additionally, we assume that
isometries φ are local minimizers with W (Dφ) = 0, this holds especially for all rigid body motions,
and that W (Dφ) →∞ for detDφ, hence W (Dφ) =∞ for detDφ≤ 0.

A particular choice for a nonlinear energy density we will consider was introduced in [Wir10] as

W (Dφ) = µ

2
∥Dφ∥2

F + λ

4
(detDφ)2 −

(
µ+ λ

2

)
logdetDφ−µ− λ

4
, (2.22)

which is a concrete instance of a Mooney-Rivling model [Cia90] and fulfills all our assumptions.

2.3.1 Membrane and Bending Energies

Now, that we have established basic notions, we turn towards the model of Heeren et al. [HRWW12],
which consists of a membrane and a bending part, that we will present separately. In both cases, they
used qualitative insights into analytical models to develop a physically-sound deformation energy.
Especially they took into consideration on which properties of the surface the limit depends.

Membrane model. For the membrane model, we need the right Cauchy-Green strain tensor C [φ] =
Dφ⊺Dφ, which is a pointwise linear operator describing the infinitesimal change of lengths on the
surface under the deformation φ. A two-dimensional representation of C [φ] ∈ R3×3 by a distortion
tensor G[φ] ∈R2×2 was derived for example in [LDRS05; CLR04]. In particular, we can write

G[φ] = g−1gφ (2.23)

with g and gφ denoting the first fundamental form of the undeformed and deformed configuration,
respectively.

Then Heeren et al. derived a membrane shell energyWmem from the results of Le Dret and Raoult
[LR95; LR96]. It is supposed to measure the tangential stretching and shearing induced by a defor-
mation φ of the surface S .

Definition 2.25 (Membrane energy). Let S be a regular surface and φ a deformation. Then the
membrane energy is given by

Wmem[S ,φ] = δ
∫
S

Wmem(G[φ])da, (2.24)

with density (2.22).

Bending energy. For the bending part of the model, Heeren et al. used results from Friesecke,
James, and Müller [FJM02] and Friesecke et al. [FJMM03], who investigated the energy for isometric
deformations of thin shells in the Γ-limit. This led to the following generic bending shell energy,
which measures the change of the second fundamental form for isometric deformations.
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Definition 2.26 (Bending energy). Let S be a regular surface andφ a deformation. Then the bending
energy is given by

Wbend[S ,φ] = δ3
∫
S

Wbend(Srel
φ )da , (2.25)

where in general we make use of the density

Wbend(A) =α(tr A)2 + (1−α)∥A∥2
F , α ∈ {0,1} . (2.26)

Recall, that the matrix representation of the relative shape operator in the parameter domain Ω
was defined in Section 2.1.1 as

srel
ξ [φ] = sξ− s∗ξ [φ] = g−1

ξ (hξ− h̃ξ) .

Based on this it was verified in [Hee16] that for α= 0 one gets

Wbend[S ,φ] = δ3
∫
S
∥Srel

φ ∥2
F da = δ3

∫
Ω

tr
(
srel
ξ [φ]2

)√
det g dξ , (2.27)

and for α= 1 one gets

Wbend[S ,φ] = δ3
∫
S

(
trSrel

φ

)2
da = δ3

∫
Ω

(
tr srel

ξ [φ]
)2√

det g dξ . (2.28)

Full elastic model. Given a surface S ∈R3 representing a physical shell and a deformation φ : S →
R3, we consider the following generic elastic deformation energy

WS [φ] =
∫
S
δWmem(G[φ])+δ3Wbend(Srel

φ )da, (2.29)

where the weight δ represents the thickness of the shell. Note that WS [φ] is invariant with respect
to rigid body motions.

2.3.2 Discrete Deformations Energies

In the following, we will consider deformations Φ of immersed discrete surfaces and present a dis-
cretization of the above model derived by Heeren et al. in [HRWW12; Hee16]. As before, we assume
that the deformations are homeomorphisms onto their image, and hence the topology of the surface
remains unchanged. Before, we have seen that the topology of a discrete surface is induced by its
connectivity and in the following, we will restrict us to immersed discrete surfaces which share the
same connectivity. Then studying discrete deformations comes to studying the differences between
immersions of a discrete surface Sh . We formalize this in the following two definitions.

Definition 2.27 (Dense correspondence). We say that two immersed discrete surfaces S and S̃ are in
dense correspondence or in 1-to-1-correspondence if they share the same connectivity Sh .

Definition 2.28 (Discrete deformations). Let S and S̃ be two immersed discrete surfaces in dense
correspondence, i.e. we have a discrete surfaceSh with two immersions X : Sh →R3 and X̃ : Sh →R3.
Then a discrete deformationΦ : S → S̃ is the unique piecewise affine map defined by its nodal values
Φ(X (v)) = X̃ (v) for all v ∈ V.

In the following, we will sometimes refer to connectivity properties of S̃ with a tilde (e.g. τ̃) even
though they are the same as for S. This allows us to easier refer to properties of the immersed sur-
face, e.g. we can write T (τ̃) for the embedded triangle of the deformed surface when actually the
embedded property T differs rather than the connectivity τ.
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Discrete membrane model. In Section 2.2.1, we have introduced an elementwise constant first
fundamental form (cf. Definition 2.20) and now this is combined with the membrane model (2.24).
Hence, to describe tangential distortions induced by Φ, we consider the elementwise constant dis-
crete distortion tensor

G[Φ]|τ = (G|τ)−1GΦ|τ ∈R2×2. (2.30)

Here, we denote by GΦ the discrete first fundamental form on S̃, and will continue to use this nota-
tion throughout this section. Putting this into the membrane model (2.24), one arrives at the follow-
ing

Definition 2.29 (Discrete membrane energy, [HRWW12]).

Wmem[S, S̃] := δ
∫

S
Wmem(G[Φ])da = δ∑

τ∈T
aτ ·Wmem(G[Φ]|τ) , S̃ =Φ(S) . (2.31)

In this energy, one can continue to use the energy density (2.22), where trG[Φ]|τ controls the
change of edge lengths and detG[Φ]|τ controls the local change of triangle area.

Discrete bending model. Next, we will connect the triangle-averaged discrete second fundamental
form from Definition 2.23 and the corresponding shape operator with the bending model (2.25)
using the density (2.26). By choosing α= 1, we can derive a discrete version of the Willmore energy.

Definition 2.30 (Discrete bending energy, [HRWW12]).

Wbend[S, S̃] := δ3
∑
τ∈T

aτ ·
(

tr(Sτ−SΦτ )
)2

, S̃ =Φ(S) . (2.32)

Heeren [Hee16] showed that one can derive the following Discrete Shells bending model by
simplifying the above bending energy, which is a different path than in the original publication
[GHDS03].

Definition 2.31 (Discrete Shells bending energy, [GHDS03; Hee16]).

WDS
bend[S, S̃] := δ3

∑
e∈E

(θe − θ̃e )2

de
l 2

e , S̃ =Φ(S) , (2.33)

where de = 1
3 (aτ+aτ′) for the two faces τ,τ′ adjacent to e ∈ E.

Gladbach and Olbermann [GO21] recently investigated the convergence of the Discrete Shells
energy (2.33) and related energies under spatial refinement for planar reference configurations, i.e.
θ = 0. They were able to prove Γ-convergence of the energies to the Willmore energy for strong
assumption on the mesh including a Delaunay condition.

Discrete dissimilarity measure. Finally, we are able to combine the membrane and bending part
and arrive at a discrete deformation energy, which at the same time can also be considered as a
dissimilarity measure since deformations are unique to the assumption of dense correspondence.

Definition 2.32 (Discrete deformation energy, [HRWW12]). Let S and S̃ be two immersed discrete
surfaces in dense correspondence and let Φ be their unique affine deformation with S̃ =Φ(S). The
discrete deformation energy W[S, S̃] =WS[Φ] is defined by

W[S, S̃] =Wmem[S, S̃]+WDS
bend[S, S̃], (2.34)

where the bending weight δ in the different contributions represents the thickness of the shell. As
the deformation is unique, we call this also the discrete dissimilarity measure.

We have associated the physical model of thin shells with discrete surfaces, hence we will also
call them discrete shells.
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Shape Spaces





Chapter 3

Shape Spaces and Time-Discrete
Geodesic Calculus

We begin the first part of the thesis with introducing the necessary background on Riemannian ge-
ometry. Before, we already discussed the geometry of surfaces and the first section of this chapter
can be seen as a generalization of this to manifold of arbitrary dimension. As demonstrated, for
example, by Kilian, Mitra, and Pottmann [KMP07], many of the notions we will see in that chapter
are useful for applications. Hence, we will discuss afterwards a variational time discretization due to
Rumpf and Wirth [RW15] that enables the numerical approximation of these notions. Finally, we will
introduce the space of discrete shells as central object of study in the remainder of the first part. As in
Chapter 2, we will introduce these concepts only briefly and provide references to more exhaustive
literature. A similar chapter was also part of [Sas19].

3.1 Riemannian Manifolds

Our goal is to model the shape space as a Riemannian manifold, hence we will briefly introduce the
needed concepts from Riemannian geometry to read the following chapters. We refer the reader to
standard textbooks such as [Car92] and [Lan95] for a more detailed treatment. This section is also
based on them as well as on [Hee17].

In this section, everything will be presented on finite dimensional manifolds since the space of
discrete surfaces will be a finite dimensional manifold. The geodesic calculus is set up in a way that
it also works on infinite dimensional manifolds. Nevertheless, considering this case would require
more care and we refer to [Lan95] for more details on infinite dimensional manifolds.

We begin with the basic definitions introducing our objects of study.

Definition 3.1 (Differentiable manifold). A differentiable manifold M of dimension d <∞ is a set
together with a family of injective maps ψα : Uα ⊂Rd →M of open sets Uα of Rd into M such that

1.
⋃
αψα(Uα) =M, and

2. for any pair α,β with ψα(Uα)∩ψβ(Uβ) =W ̸= ;, the sets ψ−1
α (W ) and ψ−1

β
(W ) are open in Rd

and the map ψ−1
β

◦ψα is differentiable.

The pair (Uα,ψα) with p ∈ψα(Uα) is called a parametrization of M at p.

Typically one assumes that the differentiable structure in Definition 3.1 is maximal with respect
to the given conditions. This is can be achieved by extending the structure by parametrizations
compatible with condition (2). To simplify notation, we are going to assume in the following that we
have indeed a global surjective parametrization ψ : U ⊂Rd ↠M.
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Definition 3.2 (Tangent space). The tangent space TpM of M at p ∈M is defined as

TpM= {γ̇(0) | γ : (−ε,ε) →M is a smooth curve with γ(0) = p,ε> 0}.

If ψ : U ⊂ Rd →M is a parametrization with ψ(ξ) = p for some ξ ∈U , then ∂ξiψ for i = 1, · · · ,d is a
basis of TpM, called the canonical basis.

This defines the topology of our manifold, and we are going to add geometric structure to it next.

Definition 3.3 (Riemannian manifold). Let M be a d-dimensional differentiable manifold. A Rie-
mannian metric on M is a family of bilinear, symmetric and positive-definite forms gp : TpM×
TpM→ R smoothly varying with p ∈M, in the sense that for a parametrization ψ : U ⊂ Rd →M
the map ξ 7→ gi j (ξ) := gψ(ξ)(∂ξiψ(ξ),∂ξ jψ(ξ)) is a smooth function on U . A manifold equipped with a
Riemannian metric is called a Riemannian manifold.

As (gi j )i j is an invertible matrix in Rd×d we have an inverse g−1 ∈ Rd×d, which we denote by
(g kl )kl , i.e. gi j g j k = δi k . In Section 2.1, we have studied embedded surfaces inR3 together with their
first fundamental form. Those are in fact two-dimensional Riemannian manifolds with a metric as
defined above induced by the embedding into R3. This also provides an intuition for the metric as
ability to measure local lengths and angles on those higher-dimensional manifolds.

Paths and geodesics. As for surfaces, one can define the length of a smooth path y : [0,1] →M on
a Riemannian manifold (M, g ) in terms of the metric as

L[(y(t ))t∈[0,1]] =
∫ 1

0

√
g y(t )(ẏ(t ), ẏ(t ))dt . (3.1)

Note that the path length is invariant to reparametrization. The path energy is defined as

E[(y(t ))t∈[0,1]] =
∫ 1

0
g y(t )(ẏ(t ), ẏ(t ))dt , (3.2)

which is not independent of the parametrization. By the Cauchy-Schwarz inequality, one directly
sees

L[(y(t ))t∈[0,1]] ≤
√
E[(y(t ))t∈[0,1]] (3.3)

and equality holds if and only if g y(t )(ẏ(t ), ẏ(t )) = const.

Definition 3.4 (Geodesic path). For y A , yB ∈ M a minimizer of the path energy among all paths
y : [0,1] →M with y(0) = y A and y(1) = yB is denoted as geodesic path connecting y A and yB .

Readers familiar with Riemannian geometry might know a different definition of geodesics us-
ing the covariant derivative. The definition above is in fact equivalent to this definition, which one
can see by investigating the Euler-Lagrange equations which leads to the usual geodesic equations.
Rumpf and Wirth [RW15] showed that a minimizer of E exists and is unique under suitable assump-
tions.

Moreover, based on this definition one can introduce the exponential map, which “shoots”
geodesics in prescribed directions.

Definition 3.5 (Exponential map). Let y(t ) = y(t , p,V ) : I →M, 0 ∈ I , be the solution of D
d t ẏ(t ) = 0

for initial data y(0) = p and ẏ(0) =V . The Riemannian exponential map expp : TpM→M is defined
as expp (V ) = y(1, p,V ).

One can show that the exponential map is locally bijection, i.e. there exists a η > 0, such that
expp : Bη(0) → expp (Bη(0)) is a bijection, which follows from the local uniqueness of geodesics. The
image Up := expp (Bη(0)) is called a normal neighborhood of p
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Definition 3.6 (Logarithm). The inverse operator of the exponential map is called the Riemannian
logarithm logp : Up → TpM, where Up denotes the normal neighborhood of p.

Proofs for the well-definedness of all these objects (even in the infinite-dimensional case) can,
for instance, be found in [RW15].

3.2 Time-Discrete Geodesic Calculus

Now that we have introduced notions geodesic calculus on Riemannian manifold, we want to be
able to compute them in practice. Instead of using numerical integration schemes for systems of
ordinary differential equations resulting the geodesic equations, we will present the elements of a
variational time discretization of geodesic calculus introduced by Rumpf and Wirth in a sequence of
papers [WBRS09; RW13; RW15]. The resulting time-discrete geodesic calculus is tailored-made for
the application to shape spaces and thus yields effective numerical methods as demonstrated, for
example, in [HRS+14; BER15; MRSS15]. In this section, we will only present the central definitions
and some basic intuition of the different time-discrete notions. For more details and especially for
detailed results on convergence, we refer to [RW15].

Metric. The continuous geodesic calculus presented in Section 3.1 was developed starting from
a Riemannian metric, allowing to locally measure lengths and angles. In contrast, the discrete
geodesic calculus below is based on the notion of a (squared) Riemannian distance. The Rieman-
nian distance is naturally induced by the metric as the minimal length of a curve connecting two
points. Conversely, given the Riemannian distance distg , we can recover the metric at some point
p ∈M by

gp (V ,W ) = 1

2
∂2

22 dist2
g (p, p)(V ,W ) , V ,W ∈ TpM . (3.4)

Coming up with a notion of distance—i.e. quantifying how different two objects are—is often much
easier than defining an inner product on tangent vectors.

For example, in the context of physical shape spaces distances can be constructed by dissimi-
larity measures as the discrete elastic energy from Section 2.3.1. However, these do not necessarily
fulfill the axioms of a distance. Therefore, one introduces an approximation W of the squared Rie-
mannian distance, which is easy to evaluate, and the discrete geodesic calculus will be based on this
approximation. Precisely, one assumes there is a smooth functional W : M×M→ R such that for
y, ỹ ∈M

W[y, ỹ] = dist2
g (y, ỹ)+O(dist3

g (y, ỹ)) . (3.5)

Note that W is not required to fulfill the axioms of a metric, and thus is easier to define in practice.
The next theorem shows, that the condition (3.5) implies consistency with the metric as in (3.4) and
is even necessary given a certain smoothness. This means for g smooth enough, a valid approxi-
mation is, for instance, given by W[y, ỹ] = 1

2 g y (ỹ − y, ỹ − y), which is of course not a practical choice
since it requires access to the metric.

Theorem 3.7 (Consistency conditions, [RW15]). If W is twice Gâteaux-differentiable onM×Mwith
bounded second Gâteaux derivative, then W[y, ỹ] = dist2

g (y, ỹ)+O(dist3
g (y, ỹ)) for ỹ close to y ∈ M

implies
W[y, y] = 0, ∂2W[y, y](V ) = 0, ∂2

22W[y, y](V ,W ) = 2g y (V ,W )

for any V ,W ∈ TyM. Furthermore, ∂1W[y, y](V ) = 0 and

∂2
11W[y, y](V ,W ) =−∂2

12W[y, y](V ,W ) =−∂2
21W[y, y](V ,W ) = ∂2

22W[y, y](V ,W ) .

If W is even three times Fréchet-differentiable, the implication becomes an equivalence.
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Time-discrete geodesics. The central building block of the time-discretization is the notion of a
discrete geodesic. To this end, we denote an ordered set of points (y0, . . . , yK ) ⊂M as a time-discrete
K -path. Usually, one thinks of such a discrete path as an uniform sampling of a smooth curve
γ : [0,1] →M by yk = γ(kτ) for k = 0, . . . ,K where τ= K −1 and K ∈N is the number of samples.

To relate the continuous path energy (3.2) to the Riemannian distance, one considers the follow-
ing two estimates

L[(y(t ))t∈[0,1]] ≥
K∑

k=1
distg (yk−1, yk ) , E[(y(t ))t∈[0,1]] ≥ 1

τ

K∑
k=1

dist2
g (yk−1, yk ) , (3.6)

where equality holds for geodesics paths due to the constant speed property. The first estimate sim-
ply follows from the definition of the length and the distance, whereas the second is an application
of the Cauchy-Schwarz inequality. This second estimate together with the statement of equality sug-
gests that the sum on the right-hand side might be a reasonable approximation of E motivating the
following

Definition 3.8 (Discrete length and energy, [RW15]). For a discrete K -path (y0, . . . , yK ) with yk ∈M
for k = 0, . . . ,K , the discrete length LK and the discrete energy E K are given by

LK [y0, . . . , yK ] =
K∑

k=1

√
W[yk−1, yk ] , E K [y0, . . . , yK ] = K

K∑
k=1

W[yk−1, yk ] . (3.7)

Then a discrete geodesic (of order K ) is defined as a minimizer of E K [y0, . . . , yK ] for fixed end points
y0, yK .

Rumpf and Wirth [RW15] showed that discrete geodesics exist and are locally unique, that the
discrete path energy Γ-converges to the continuous path energy, and that minimizers converge as
well. Furthermore, they showed that the points along the discrete geodesic are equidistributed in
terms of the Riemannian distance.

Logarithm and Exponential. Based on Definition 3.8, we will now go on to introduce discrete
counterparts to the notions of logarithm and exponential map. Let p, q ∈ M such that there is
a unique geodesic y : [0,1] → M connecting them. Then, by Definition 3.6, we have logp (q) =
ẏ(0) ∈ TpM. Using first-order difference quotients in time we get the approximation logp (q) =
τ−1(y(τ)− y(0))+O(τ), which motivates the following

Definition 3.9 (Discrete logarithm). Let p, q ∈M and suppose the discrete geodesic (y0, . . . , yK ) is
the unique minimizer of the discrete path energy (3.7) with y0 = p and yK = q . Then we define the
discrete logarithm LogK

p (q) = K (y1 − y0).

Next, we introduce a discrete exponential map Expk
y0

in a way such that it is compatible with

the discrete logarithm, i.e. such that for a discrete geodesic (y0, . . . , yK ), we have that Expk
y0

( V
k ) = yk

where V = LogK
y0

(yK ) = K (y1−y0). For this, we start with the definition of Expk
y0

as third point y2 ∈M,
such that (y0, y1, y2) is a time-discrete geodesic for K = 2 and continue by recursion.

Definition 3.10 (Discrete exponential map). For given points y0, y1 ∈M, V = K (y1 − y0), we define
ExpK

y0
(V ) := yK , where for k ∈ {1, . . . ,K −1} the yk+1 are defined recursively as solutions of the nonlin-

ear problem

yk+1 ∈M such that ∂2W[yk−1, yk ]+∂1W[yk , yk+1] = 0.

Rumpf and Wirth [RW15] showed the convergence of the discrete logarithm and exponential
map to their continuous counterparts based on the convergence of discrete geodesics.
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3.3 The Space of Discrete Shells

Our objective is to study deformations of discrete shells and derive useful applications from this,
for instance, in shape editing. As mentioned in the introduction, we do this by considering a shape
space, i.e. a space containing shapes as points. In our case, the shapes will be immersions of a
discrete surface and we will the equip the space with a Riemannian metric based on the physically
sound deformation energies from Section 2.3.1. This structure was introduced by Heeren et al. in
[HRWW12; HRS+14; Hee16]. As observed by Kilian, Mitra, and Pottmann [KMP07], this space allows
us to phrase different problems relevant in computer graphics via the geometric notions we have
seen in Section 3.1. Applying the time-discretization from Section 3.2, we can compute numerical
approximation of these notions.

As in Section 2.3.1, we will only consider discrete surfaces in dense correspondence (cf. Def-
inition 2.27). Hence, we are given the connectivity Sh of a triangle mesh and consider different
immersions of it into three-dimensional space.

Definition 3.11 (Space of discrete surfaces, [Hee16]). Given the connectivity Sh of a triangle mesh,
the shape space of discrete surfaces M[Sh] is given by all immersions of Sh into R3—i.e. all immersed
discrete surfaces S in dense correspondence with Sh—modulo rigid body motions.

Definition 3.12 (Space of discrete shells, [Hee16]). Given the connectivity Sh of a triangle mesh, the
Riemanninan shape space of discrete shells (M[Sh], g ) is given by the shape space of discrete shells
M[Sh] together with the Riemannian metric g induced by the discrete deformation energy from
Definition 2.32.

That the discrete deformation energy, in fact, induces a Riemannian metric on the shape space
was proven by Heeren et al. [HRS+14]. In the following, we are assuming that we work with a fixed
connectivity Sh and thus will drop the explicit dependence on it and simply write M for the shape
space. As the immersion of a discrete surface is uniquely determined by its nodal positions, we can
also identify M with an open subset of R3|V|/SE(3). However, we will also introduce a representation
of M as an implicit submanifold in the next chapter.
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Chapter 4

Nonlinear Rotation-Invariant
Coordinates

In the previous chapters, we discussed elastic energies on discrete surfaces and how to use them to
introduce the structure of a Riemannian manifold on the space of all immersions of a given discrete
surface. Actually computing Riemannian operations boils down to solving geometric variational
problems originating from the time-discretization of geodesic calculus. These variational problems
are often quite challenging to solve numerically as they are inherently nonlinear. Furthermore, the
elastic energy is rigid body motion invariant and thus these need to be controlled via an appro-
priate constraint to obtain a well-posed problem, which can be difficult in practice. Moreover, we
already noted that the space of immersions can be represented as an open subset of the quotient
space R3|V|/SE(3). In this representation, also the tangent space at an immersion consists of equiva-
lence classes of infinitesimal deformations under the action of the Lie algebra associated with SE(3).
This makes actually using the tangent space for computations very cumbersome. Thus, our aim
was to find an alternative representation of a discrete surface’s geometry which is inherently rigid
body motion invariant and well-suited to be used as degrees of freedom for numerical optimization
problems.

To this end, we propose to use a representation that we call the Nonlinear Rotation-Invariant
Coordinates (NRIC). They describe the geometry of a discrete surface by the vector stacking all edge
lengths and dihedral angles instead of nodal positions. These coordinates are naturally rigid body
motion invariant and can be seen as a discrete equivalent of the first and second fundamental
form. Then—by virtue of integrability conditions akin to the Gauß–Codazzi equations introduced
by Wang, Liu, and Tong [WLT12]—we will see that the space of immersions can in fact be repre-
sented by a implicit submanifold of R2|E| which immediately greatly facilitates working in its tangent
space. Beyond their inherent invariance to rigid transformations, these coordinates offer additional
benefits, such as their natural occurrence in discrete deformation energies and their representation
of natural modes of deformation in a localized sparse fashion. The latter property will be of central
importance in the next chapter.

Prior work on shape interpolation by Winkler et al. [WDAH10] and Fröhlich and Botsch [FB11]
showed that linear blending of the NRIC for a set of shapes already yields interesting nonlinear de-
formations. However, since, in general, nodal positions that realize given edge lengths and dihedral
angles may not exist, these methods rely on optimization in the space of nodal positions. We will
instead consider edge lengths and dihedral angles as primary degrees of freedom for geometric vari-
ational problems and introduce a general approach to solve such problems numerically. Through
practical examples, we will see that this approach is also useful for variational problems beyond the
time-discrete geodesic calculus. In particular, problems involving near-isometric deformations are
typically ill-conditioned when phrased in nodal positions due to the combination of high stretching
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and low bending resistance. In contrast, NRIC will offer a natural way to phrase and efficiently solve
these problems.

The remainder of this chapter is split into four sections. We will begin in Section 4.1 by introduc-
ing the necessary background on edge lengths and dihedral angles and a discrete equivalent of the
fundamental theorem of surfaces. In Section 4.2, we will use this to represent the space of immer-
sions as an implicit submanifold. We will introduce our general setup for phrasing and numerically
solving variational problems in NRIC in Section 4.3. Finally, in Section 4.4, we will demonstrate
results obtained by minimization in NRIC and sketch how this might be useful in applications.

Remark. This chapter is a continuation and extension of the work from the author’s Master’s thesis
[Sas19]. As such, it is the result of joint work with Behrend Heeren, Klaus Hildebrandt, and Martin
Rumpf published in [SHHR20]. The adaption of the discrete Riemannian logarithm and exponential
maps was published as part of [SHR20], which will be discussed in more detail in the next chapter.

4.1 Discrete Gauß–Codazzi Equations

We begin the chapter with recalling the characterization of admissible edge lengths and dihedral
angles—i.e. such that an immersion admitting them exists—by Wang, Liu, and Tong [WLT12]. To
this end, we first describe edge lengths and dihedral angles as discrete equivalents of first and sec-
ond fundamental form. Then we will present a line of argumentation mirroring the one in Sec-
tion 2.1.1 and leading to conditions reminiscent of the Gauß–Codazzi equations. This section is also
a condensed version of an equivalent chapter in [Sas19]. Here, we will restrict ourselves to simply-
connected discrete surfaces and details on the general case can be found in the aforementioned
references.

Discrete Fundamental Forms. To describe edge lengths as an equivalent to the discrete first fun-
damental form we use that the geometry of a Euclidean triangle is completely determined by its edge
lengths. To this end, let us recall the discrete first fundamental form from Definition 2.20, which was
elementwise constant and given by

G|τ =
( ∥E2(τ)∥2 −〈E1(τ),E2(τ)〉
−〈E1(τ),E2(τ)〉 ∥E1(τ)∥2

)
(4.1)

for each τ ∈ T. We directly see that the entries of the diagonal are simply squared edge lengths
of the triangle T (τ). Additionally, the off-diagonal entries are given by Euclidean scalar products
of edge vectors and from linear algebra we recall that for two vectors v, w ∈ R3 we have 〈v, w〉 =
∥v∥∥w∥cos(γ), where γ is the angle between v and w . Hence, in our case, we need to compute
the interior angles of a triangle from its edge lengths which is possible due to law of cosines. We,
therefore, see we can describe our discrete first fundamental form solely in terms of edge lengths.
In Section 2.3, we also needed the determinant of G|τ, which is given by the triangle’s squared area.
Let us note, that this can also be computed directly from edge lengths by Heron’s formula—another
classic result from trigonometry—which will come in handy later on.

Next, we recall the triangle-averaged discrete second fundamental form, which is elementwise
constant and given in Definition 2.23 by

H |τ =−4aτ
2∑

i=0

cos θi+π
2

∥Ei∥
Mi (4.2)

for each τ ∈ T, where (M0, M1, M2) is the basis of symmetric 2× 2-matrices from (2.17). Again, we
immediately see that we need the edge lengths to define the matrix, as well as the triangle’s area.
Additionally, we need the dihedral angles (i.e. the angle between adjacent face normals, cf. Defini-
tion 2.22) of the immersed discrete surface.
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Altogether, we can fully describe our discrete fundamental forms by lengths and angles, and we
will treat them as such in the following. For an immersion X ∈ R3|V| of a discrete surface Sh , we
denote by (le (X ))e∈E its edge lengths and by (θe (X ))e∈E its dihedral angles. We combine them in a
single vector and thus obtain a map

Z : R3|V| →R|E|×R|E|

X 7→ ((le (X ))e∈E, (θe (X ))e∈E).
(4.3)

In the following, we will denote by z = (le ,θe )e∈E a set of lengths and angles in R2|E|, regardless of
the fact whether it belongs to an immersion of our discrete surface or not, and by Z [X ] the lengths
and angles of a specific immersion. As we will consider z ∈ R2|E| as coordinates describing the ge-
ometry of a surface in optimization problems, we also call them the Nonlinear Rotation-Invariant
Coordinates (NRIC).

The map Z is well-defined only on vertex positions in R3|V| which do not lead to degenerated
triangles, i.e. belong to an immersion as in Definition 2.19. Otherwise, the dihedral angles would
not be well-defined. Then, restricted to this open domain, Z is a smooth map.

4.1.1 Discrete Integrability Conditions

In Section 2.1.1, we have seen that not all bilinear forms are fundamental forms of an immersed
surfaces, but rather they have to fulfill the Gauß–Codazzi equations. The same holds for elements
in R2|E| that are actually given as edge lengths and dihedral angles of an immersion of our discrete
surface as proven in [WLT12] and summarized below.

Triangle Inequality. The first condition is that we have to ensure the lengths actually describe valid
Euclidean triangles. This is guaranteed by the triangle inequality, formalized in the following defini-
tion.

Definition 4.1 (Triangle inequality constraints). For a face τ ∈ T with edges ei ,e j , and ek , we define
the triangle inequality map on lengths and angles z to be

Tτ(z) = (
li + l j − lk , l j + lk − li , lk + li − l j

) ∈R3. (4.4)

We say that lengths and angles z fulfill the triangle inequality constraints if

Tτ(z) > 0 for all τ ∈ T, (T)

where the inequality is to be understood componentwise.

Next, we will derive the conditions reminiscent of the Gauß–Codazzi equations. They ensure that
we can integrate the local change of geometry induced by the lengths and angles to get the immersed
discrete surface. By this, we mean that constructing the immersion starting from a single triangle is
well-defined in the sense that it is invariant with respect to the order of construction. Therefore,
they are called discrete integrability conditions. To formulate them, we have to introduce the notion
of frames on triangles and transition rotations, which describe their connection.

Frames. In the following, we will work with face normals and thus localize tangent spaces on the
triangles of an immersed discrete surface. For a triangle τ ∈ T, where again by abuse of notation we
identify it with its immersion, we denote by Nτ ∈ S2 its normal and by TτS its tangent plane, i.e. the
plane spanned by its edge vectors.

Definition 4.2 (Discrete frame). Given a discrete surface Sh with immersion X ∈ R3|V|, we define a
discrete frame on a face τ to be an orthonormal basis Fτ = (b1,b2,b3) with b3 = Nτ, hence (b1,b2)
forms an orthonormal basis of the tangent plane TτS.
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The notion of discrete frames provides a formal way to talk about the triangles’ orientation of
the immersed surface as orthonormal bases. This will allow us in the following to describe the local
change of geometry using changes of bases and hence matrices.

On a single immersed triangle, there naturally exist uncountably many discrete frames through
the different choices for the orthonormal basis (b1,b2) of the tangent plane TτS differing by a rota-
tion around the normal. Thus, the choice of a discrete frame on a triangle can be completely char-
acterized by the angle of its first basis vector b1 to one of the edges. This leads us to the following
notion of a standard discrete frame.

Definition 4.3 (Standard discrete frame). Considering a face τ with edges e1,e2, and e3, where we
assume the local indices to be ordered consistently, we define the standard discrete frame to be

Fτ =
(

E1
∥E1∥ , E1×Nτ

∥E1×Nτ∥ , Nτ

)
.

Transition Rotations. Now, we introduce a relation between the frames of adjacent triangles on
which the integrability conditions will be built. It describes the change of the frames induced by the
dihedral angles through change of basis matrices, but can also be explained by the reconstruction of
a triangle from an adjacent triangle. We first consider the second explanation.

Let us look at two faces τ1 and τ2 with vertices v1, v2, v3 and v2, v3, v4 respectively, i.e. e = (v2v3)
is the common edge of the two. As before, we denote by (Xi )i∈{1,2,3,4} the coordinates of immersed
vertices, by Ei j = Xi − X j the corresponding edge vectors, and by N1 resp. N2 the normals of the
faces. Let F1 and F2 be frames on τ1 and τ2 respectively. We derive an intrinsic formulation, where
we try to find a matrix R such that F2 = F1R. It encodes how the coefficients have to change if we
want to express a vector given in F2 by coefficients in F1. Let us take a closer look at this. First, we

introduce intermediate frames F̃1 =
(
E , E×N1

∥E×N1∥ , N1

)
and F̃2 =

(
E , E×N2

∥E×N2∥ , N2

)
. Then

R = F−1
1 F2

= F−1
1 F̃1F̃−1

1 F̃2F̃−1
2 F2.

Now, as both F1 and F̃1 are orthogonal, and F−1
1 F̃1z = z we see that F−1

1 F̃1 is a rotation around the

z-axis. Furthermore, by F1F̃−1
1 E = F11 and the fact that trF1F̃−1

1 = trF−1
1 F̃1, we deduce F−1

1 F̃1 =
Rz (γe,F1 ). In the same fashion, we obtain F̃−1

1 F̃2 = Rx (−θe ) and F̃−1
2 F2 = Rz (γF2,e ) and therefore

R = Rz (γe,F1 )Rx (−θe )Rz (γF2,e ),

which justifies the following

Definition 4.4 (Transition rotation). Given an immersed discrete surface S with frames Fτ for all
faces τ ∈ T, we define for an edge e with adjacent faces τi and τ j the transition rotation by

Ri j = Rz (γe,Fi )Rx (−θe )Rz (γF j ,e ), (4.5)

where γe,F j and γFi ,e denote the angles between the immersed edge E and the first vector of the
frames Fτi resp. Fτ j .

If the frames F f are standard discrete frames, the angles γ are given by the inner angles of the
triangles. Hence, they can be computed from edge lengths using the law of cosines and thus the
transition rotations Ri j can be completely determined from the length and angles of the immersed
surface. This allows us to define transition rotations for NRIC without knowing the immersion, as
long as they fulfill the triangle inequality, formalized as follows. We define for an edge e with adjacent
faces τi and τ j the induced transition rotation by

Ri j (z) = Rz (γe,i )Rx (−θe )Rz (γ j ,e ), (4.6)

where γe, j and γi ,e denote the interior angle between the common edge e and the first edge of τi

resp. τ j , determined from the edge lengths of z.
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The Conditions. Starting from this description of how the
frames of adjacent triangles are related to each other, we can
derive a necessary condition for lengths and angles to be ad-
missible. Thereby, we consider an interior vertex v which is the
center of a n-loop of faces τ0, . . . ,τn−1 with frames F0, . . . ,Fn−1.
As above, to foster intuition we can think of them as given by
the normal and one of the edges. We have seen that we can re-
construct them from each other using the extrinsic transition
rotations introduced above by F j = Fi Ri j . As this amounts to
reconstructing a triangle from its neighbor, if we apply this se-
quentially along the loop, we will get back to the original trian-
gle, i.e. F0 = F0

∏n−1
i=0 Ri ,(i+1) mod n , and hence

∏n−1
i=0 Ri ,(i+1) mod n = Id. Now, assume that we have an

element z ∈ R2|E| and consider its induced transition rotations Ri j (z). Then for z to be admissible
those transitions have to fulfill the equality as well.

Definition 4.5 (Discrete integrability conditions). Given a discrete surface Sh , for each interior ver-
tex v , we define the discrete integrability map on NRIC z ∈R2|E| with T (z) > 0 as

Iv (z) =
n−1∏
i=0

Ri ,(i+1) mod n(z) (4.7)

for the n-loop of faces Nv = {τ0, . . . ,τn−1} around v . We say that lengths and angles z satisfy the
discrete integrability conditions if

Iv (z) = Id for each v ∈ V0. (I)

Remark. Note that for an immersed discrete surface the conditions are independent of the choice of
local frames. Another choice for the discrete frame on the triangle τ j would only differ by a rotation
around the normal and thus would affect both Rz (γe,F j ) and Rz (γF j ,e ′) canceling the effect in the
product. Especially, we can also make different choices for validating the condition on different
vertices. This allows us to depart in the implementation from the fixed choice of standard frames
to check (I) more efficiently by reducing the number of needed rotations. For this approach, let us
consider the vertex v ∈ V with the n-loop of faces τ0, . . . ,τn−1 around it. Then there are also n edges
connected to v and we create a one-to-one correspondence between faces and edges such that the
edge belongs to the face. Based on this, we choose the frames F0, . . . ,Fn−1 such that the chosen
edge is always the first basis vector. The corresponding transition rotations simplify to Ri j (z) =
Rx (θe )Rz (γ j ,v ), where γ j ,v is the interior angle at v in τ j . By this, the product of transition rotations
Iv (z) becomes an alternating product of rotations about the interior and dihedral angles.

Fundamental Theorem. Finally, we one can show that these conditions are indeed necessary and
sufficient for z to admissible for a simply-connected discrete surface.

Theorem 4.6 (Discrete fundamental theorem for simply-connected surfaces, [WLT12]). Given a
simply-connected discrete surface Sh , if z ∈ R2|E| satisfies the discrete integrability conditions and the
triangle inequalities, then there exists an immersion X ∈ R3|V| of the surface in three-dimensional
Euclidean space admitting z as edge lengths and dihedral angles.

The proof amounts to showing that constructing the immersions of all triangles from a given
triangle is independent of the chosen path. To this end, one considers the loop resulting from two
different reconstruction paths and applies the integrability condition (I) recursively to show that this
loop leads to the identity. The proof was originally introduced by Wang, Liu, and Tong [WLT12] and
a more explicit version matching the notation here can be found in [Sas19].
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However, in the formulation above, I(z) consists of matrices from SO(3) which is impractical for
implementations. Thus we aim at reformulating this using a suitable parametrization of SO(3). In
[Sas19], we have used Euler angles for this. In the following, we will take a different route based on
quaternions.

Quaternions. To this end, let us first briefly recall the necessary basics of quaternions and their
relation to spatial rotation. For a detailed treatment, we refer to standard textbooks such as [Han07].
Quaternions can be understood as an extension of the complex numbers and are generally repre-
sented as q = a+bi +c j +dk , where a,b,c,d ∈R and i , j ,k are the so-called quaternion units. These
units fulfill the fundamental identity i 2 = j 2 = k2 = i j k = −1, from which the general multiplica-
tion of quaternions can be defined via distributive and associative law and thus quaternions form
a noncommutative division ring H. In this context, a is called the real part of q and b,c, and d the
vector part, for which we also write vec(q) = (b,c,d) ∈ R3. Unit quaternions are those for which the
product with their conjugate q̄ := a−bi −c j −dk is one, i.e. qq̄ = a2+b2+c2+d 2 = 1. Points in three-
dimensional space p ∈R3 can be identified with quaternions having vanishing real part, i.e. we write
p = p1i +p2 j +p3k . Now, given a rotation Q around the unit vector u ∈ R3 by angle ϕ ∈ [0,2π) we
can define a corresponding unit quaternion

q(u,ϕ) := cos
ϕ

2
+ (

u1i +u2 j +u3k
)

sin
ϕ

2
.

Then one can verify that for any p ∈ R3, the conjugation qpq−1 with q results in the rotated point
Qp. The quaternion −q(u,ϕ) would lead to the same rotation, thus the quaternions form a double
covering of SO(3). Furthermore, investigating this conjugation one realizes that the composition
of two rotations given as unit quaternions q1, q2 ∈ H is given by their product q1q2 and hence this
correspondence is a homomorphism between SO(3) and the unit quaternions.

Reformulation. Turning to the reformulation of the integrability conditions (I), recall that we
needed rotations around the 0th and 2nd basis vector in R3 for which we now introduce the corre-
sponding quaternions

q0(ϕ) := cos
ϕ

2
+ i sin

ϕ

2
, q2(ϕ) := cos

ϕ

2
+k sin

ϕ

2
for ϕ ∈ [0,2π). (4.8)

Then we identify the simplified transition rotation Ri j = R0(θi )R2(γ j ) from before with the quater-
nion

qi j := q0(θi ) q2(γ j ), (4.9)

where again τ0, . . . ,τnv−1 and e0, . . . ,env−1 are the nv -loops of faces resp. edges connected to v , γ j

is the interior angle at v in τ j with j = i +1 modulo nv , and θi is the dihedral angle at ei . To finally
reformulate the condition (I), we need to deal with the ambiguity introduced by the double covering,
i.e. that the identity rotation is represented by q =±1. However, we see that in both cases the vector
part vec(q) ∈R3 is zero, which is indeed for unit quaternions already a sufficient condition to be plus
or minus one. Then we use this alternative characterization of the identity rotation to formulate the
quaternion integrability conditions as

Qv (z) := vec

(
nv−1∏
i=0

qi ,(i+1) mod nv (z)

)
!= 0 (Iq)

for the nv -loop of faces around all interior vertices v ∈ V0.
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Reconstruction of an Immersion. The constructive proof of Theorem 4.6 also provides us with an
algorithms to reconstruct immersions X ∈ R3|V| from NRIC z ∈ R2|E| fulfilling the integrability con-
ditions. In this context, the position and orientation of the immersion are specified via fixing one
vertex and the orientation of one triangle. For a z ∈R2|E| that does not satisfy the integrability condi-
tions, we can compute the immersion of the closest admissible point. This means we search for the
solution of the nonlinear least-squares problem minX∈R3|V|∥Z (X )−z∥2 with some appropriate norm
onR2|E|. Fröhlich and Botsch [FB11] first used this approach with a weighted Euclidean norm, which
we will discuss in Section 4.3.1. A detailed explanation and comparison of these reconstruction al-
gorithms can be found in [Sas19, Chapter 3] or [SHHR20, Section 7].

4.2 Manifold Structure and Geodesic Calculus

At the end of Section 3.3, we remarked that the space of all immersions of a discrete surface Sh

modulo rigid body motionsM[Sh] can be represented as an open subset ofR3|V|/SE(3). This has also
been the representation primarily used in numerical computations, i.e. to work with nodal positions
and fix the rigid body motions via some constraint. However, handling rigid body motions can be
cumbersome in practice, especially when considering infinitesimal variations, i.e. tangent vectors.
Hence, we will introduce an alternative representation of M[Sh] as implicit submanifold of R2|E|

based on the integrability conditions introduced in the previous section. In the following, we will
refer to the aforementioned representation using nodal positions as N [Sh] to better discriminate
it from our new representation. Furthermore, we will drop the explicit dependence on Sh in our
formulas since we will work with a fixed discrete surface throughout the section.

The representation we choose is—not surprisingly—the set of all admissible lengths and angles,
i.e. we define

M := Z (N ) = {z ∈R2|E| | ∃X ∈N : Z (X ) = z}. (4.10)

From Theorem 4.6, we know that we can it alternatively characterize by

M= {z ∈R2|E| | T (z) > 0,Q(z) = 0}, (4.11)

which indeed describes M as an implicit submanifold of R2|E|. In the following, we will describe the
remaining geometric structure on M and discuss some adaptions to the time-discrete geodesics
calculus we have seen so far.

Tangent space. The implicit formulation (4.11) consists of the triangle inequalities defining an
open convex polytope and of the nonlinear integrability conditions defining a lower-dimensional,
differential structure on M. Therefore, we can derive an implicit description of its tangent space
solely based on Q. In detail, for z ∈M the tangent space is given by

TzM= kerDQ(z) := {
w ∈R2|E| | DQ(z)w = 0

}
, (4.12)

where DQ(z) is a matrix in R3|V0|×2|E|.
The partial derivatives of Qv are given by the chain rule as

∂zkQv (z) = vec

(
nv−1∑
i=0

q01(z) . . .∂zk qi ,i+1(z) . . . qnv−1,0(z)

)
, (4.13)

where the partial derivatives of a quaternion-valued map are to be understood componentwise as
for vector-valued maps. The gradient of Qv can be computed with O(nv ) cost and is sparse. It has
only O(nv ) non vanishing entries, i.e. ∂θeQv ≡ 0 if v is not a vertex of the edge e and ∂leQv ≡ 0 if the
edge e is not an edge of a triangle with vertex v .
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The direct access to this tangent space is useful in various computational applications. For ex-
ample, in Chapter 5, on the one hand we will see that it allows the straightforward computation of
a PGA on the shape space of discrete shells, while the other hand it will also be a crucial building
block to enable the computation of appropriate sparse deformation modes. Furthermore, access to
the tangent space allows us to numerically investigate the infinitesimal rigidity of surfaces, which
we will explain in more detail in Section 4.4. To incorporate the tangent space into our algorithms,
we can, for example, simply use the equation DQ(z)w = 0 as a constraint in an optimization setup,
which we will see later in Chapter 5. Alternatively, we can use the orthogonal projection onto it,

which is given by the linear operator Id−DQT
(
DQDQT

)−1
DQ where the involved linear system

can be solved with direct approaches such as the Cholesky decomposition. If we want to study the
tangent space itself, we can compute a basis for it by computing the Singular Value Decomposition
(SVD) of DQ(z) and using the right-singular vectors corresponding to the singular value zero or by
computing a rank-revealing QR decomposition of it.

Riemannian Metric. Given an appropriate elastic energy for NRIC we can define a metric on tan-
gent vectors of the NRIC manifold following Rayleigh’s paradigm as explained in Section 3.2. Con-
cretely, we define the metric as half of the Hessian of the elastic energy, i.e. gz : R2|E|×R2|E| →Rwith
gz = 1

2 HessW[z, ·] restricted to TzM×TzM. To this end, we will discuss in Section 4.3 the adaption
of the discrete elastic energy introduced in Section 2.3.1 and a quadratic approximation introduced
in [FB11].

Discrete Geodesic Calculus. Having access to the tangent space and tangent vectors has also im-
plications for the time-discrete geodesic calculus introduced in Section 3.2. There we assumed that
we do not work with tangent vectors, instead we used the difference of two points on the manifold
as approximation and based the whole calculus on this approximation. Here, we present a simple
adaption of this calculus, concretely for the time-discrete exponential and logarithm, via the projec-
tion onto the manifold and its tangent space, respectively.

To this end, we define the discrete logarithm at some discrete shell z0 as

LogK
z0

(zK ) = v0

where v0 = K PTz0M(z1 − z0) is a the initial velocity of the discrete geodesic (z0, z1, . . . , zK ) based on

time step size τ= 1
K . Here, PTz0M is the orthogonal projection onto the tangent space Tz0M with re-

spect to the metric gz0 , which is extended to R2|E| per its definition. The corresponding exponential
map ExpK

z0
(v0) for v0 ∈ Tz0M, as the inverse mapping, computes a discrete geodesic (z0, z1, . . . , zK )

for given discrete, initial velocity v0. In fact, we first compute z1 for given z0 and v0 via orthog-
onal projection of z0 + v0

K onto M with respect to gz0 , i.e. z1 := PM[z0 + v0
K ]. The projection PM

can be computed using a Gauß–Newton scheme [FB11]. Then we recursively compute zk+1 solving
∂2W[zk−1, zk ]+∂1W[zk , zk+1] = 0 in a least squares sense, i.e.

zk+1 = argmin
z∈M

∥∂2W[zk−1, zk ]+∂1W[zk , z]∥2
2.

For sufficiently large K , a solution to ∂2W[zk−1, zk ]+ ∂1W[zk , z] = 0 under the constraint z ∈ M
exists and then agrees with zk+1. After K −1 steps this yields the requested discrete geodesic and the
discrete exponential, i.e.

ExpK
z0

(v0) := zK .

As a sanity check for this construction, we note the following convergence result, which easily
follows from the results in [RW15] and the regularity of the projection onto the manifold for large
enough K , cf. [LS21].
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Proposition 4.7. Let M ⊂ Rd be an embedded Riemannian manifold. Then for a tangent vector v ∈
TzM, we have ExpK

z (v) → expz v for K →∞. Correspondingly, for a point z̃ ∈M, we have LogK
z (z̃) →

logz z̃.

A numerical investigation of this convergence can be found in Section 4.4.

4.3 Geometric Optimization Problems

The quest for geometrically optimal, discrete surfaces often leads to variational problems. However,
in many applications, the corresponding objective functional can naturally be formulated in our
coordinates, thus on the NRIC manifold (4.11), and its first and second variation can be computed
easily. To this end, one aims at solving a constrained optimization problem, i.e. given an objective
functional E : R2|E| →R the task is to

minimize
z∈R2|E|

E(z)

subject to Qv (z) = 0 for each v ∈ V0,

Tτ(z) > 0 for each τ ∈ T.

(OPT)

Due to non-convexity of the objective, in general, there is no guarantee for a unique, global mini-
mizer for the optimization problem.

4.3.1 Elastic Energies

One central ingredient in many of the examples we will consider in the next section is an elastic
deformation energy W between different NRIC. To this end, we will explain how the membrane and
bending energy discussed in Section 2.3.1 can be reformulated in NRIC. Both are then again added
to obtain the elastic energy

W[z, z̃] =Wmem[z, z̃]+Wbend[z, z̃], (4.14)

where the components scale quadratically, respectively cubically in the the thickness δ. This refor-
mulation will be a straightforward undertaking which underlines our claim that NRIC are a natural
choice for computing deformations. In particular, we will see that the local injectivity constraints
inbuilt in this energy allow us to replace the triangle inequalities and thus reduce the number of
constraints. For comparison reasons, we will finally consider a simple quadratic deformation en-
ergy as it has been used in [FB11].

Membrane energy. Consider two immersions X , X̃ ∈ R3|V| with corresponding NRIC z, z̃ ∈ R2|E|.
To reformulate the membrane energy, we have to express the trace and determinant of the discrete
distortion tensor G[X , X̃ ]|τ = (G|τ)−1G̃|τ for a face τ ∈ T in edge lengths, interior angles, and triangle
areas, which can all be derived from edge lengths. The determinant takes the form,

detG[X , X̃ ]|τ = (detG|τ)−1 detG̃|τ = a−2
τ ã2

τ. (4.15)

Concerning the trace, recall the inverse of the discrete fundamental form, given by Cramer’s rule as

(G|τ)−1 = 1

detGτ

( ∥E1∥2 〈E1,E2〉
〈E1,E2〉 ∥E2∥2

)
,

which implies

tr G[X , X̃ ]|τ = 1

4a2
τ

(∥E1∥2∥Ẽ2∥2 −2〈E1,E2〉〈Ẽ1, Ẽ2〉+∥Ẽ1∥2∥E2∥2) .
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As the computation of all terms only requires edge lengths, we also write G[z, z̃]|τ for the distortion
tensor. Hence, we define the membrane energy on NRIC z, z̃ ∈R2|E| as

Wmem[z, z̃] = δ∑
τ∈T

aτ ·Wmem(G[z, z̃]|τ), (4.16)

with the same energy density

Wmem(A) = µ

2
tr A+ λ

4
det A−

(
µ+ λ

2

)
logdet A−µ− λ

4
,

as before, where µ and λ are positive material constants and aτ is the area of τ computed from edge
lengths by Heron’s formula.

Bending energy. Next, we adapt the bending energy introduce in Definition 2.31. One directly sees
that expressing this energy in lengths and angles requires no further calculations, and as before we
replace its primary variables by NRIC. That is we define the Discrete Shells bending energy on NRIC
z, z̃ ∈R2|E| as

Wbend[z, z̃] := δ3
∑
e∈E

(θe − θ̃e )2

de
l 2

e , (4.17)

where de = 1
3 (aτ+ aτ′) for the two faces τ and τ′ adjacent to e ∈ E, as before computed by Heron’s

formula.

Relationship with triangle inequalities. One essential property of the membrane energy is that it
allows us to control local injectivity via the built-in penalization of volume shrinkage, i.e. we have
Wmem(G[z, z̃]|τ) → ∞ for ãτ → 0. To see this, we recognize that detG[z, z̃]|τ = (detG|τ)−1 detG̃|τ =
a−2
τ ã2

τ and hence − logdetG[z, z̃]|τ → ∞ when ãτ goes to zero. This control over the local injec-
tivity also has consequences for the consideration of the triangle inequalities. Because of it, we
also have that the energy diverges, i.e. Wmem(G[z, z̃]|τ) → ∞ if one of the components of Tτ(l̃ ) ap-
proaches zero meaning that we get close to violating one of the triangle inequalities. Especially, we
set Wmem(G[z, z̃]|τ) =∞ if Tτ(l̃ ) > 0 does not hold. This allows us to characterize the NRIC manifold
M by

M= {
z ∈R2|E| |W[z∗, z] <∞ for a fixed z∗ ∈M, Q(z) = 0

}
, (4.18)

avoiding the explicit dependence on the triangle inequalities (T) we had before. Note, however, that
the integrability conditions (Iq) are still necessary as finite energy does not guarantee their attain-
ment. The characterization (4.18) will be helpful later on to devise efficient numerical schemes for
solving variational problems on M.

Quadratic model. Previously, Fröhlich and Botsch [FB11] used a quadratic deformation model for
NRIC, i.e. they considered the weighted quadratic energy

Wq [z, z∗] = δ∑
e∈E

αe∥le − l∗e ∥2 +δ3
∑
e∈E

βe∥θe −θ∗e ∥2 . (4.19)

In fact, almost the same model has been used by Grinspun et al. [GHDS03] to define the Discrete
Shells energy for physical simulations based on nodal positions. The weightsα= (αe )e and β= (βe )e

can be chosen in different ways. Typically, they are computed from edge lengths le = le (z̄) and ar-
eas de = de (z̄) associated with edges and defined on some representative reference configuration
z̄ ∈ R2|E|. For example, Grinspun et al. [GHDS03] and Fröhlich and Botsch [FB11] set in a related
context αe = l−2

e and βe = l 2
e d−1

e , whereas Heeren et al. [HRS+16] have chosen αe = de l−2
e , for e ∈ E.

Here the (physical) parameter δ > 0 trades the impact on length variations off against angle varia-
tions and can be considered as the thickness of the material as before. This quadratic energy has no
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Figure 4.1: Left: Unit sphere (grey) with black constraint curves to be shortened by means of equality
constraints on edge lengths along with different results for varying bending parameter δ= 10−{0,1,2} in
the nonlinear objective (4.14). Right: Same experiment but with (orange) constraint areas where the
target edge lengths were increased by 30%.

inbuilt control over the local injectivity of the deformation and hence does not allow a characteriza-
tion without explicit dependence on the triangle inequalities as in (4.18). We found that in many of
our examples this decreased the numerical accessibility and increased the needed number of itera-
tions and runtimes. Nevertheless, as demonstrated by Fröhlich and Botsch [FB11], it often leads to
natural-looking deformations and we will consider it in some of our examples.

We also generalize this quadratic energy to introduce a family of weighted Lp -norms on R2|E|.
Consider, as above, edge lengths l̄e = le (z̄) and areas d̄e = de (z̄) defined on some representative
reference configuration z̄ ∈R2|E|. Then we define

∥u∥p
p := ∑

e∈E

(
1

l̄e
|le |

)p

+ ∑
e∈E

(
l̄e√
d̄e

|θe |
)p

, u = (l ,θ) ∈R2|E|. (4.20)

For p = 2, this agrees with the quadratic energy from above with the weights used by Fröhlich and
Botsch [FB11]. These norms will come in handy in Chapter 5, where we will use the L1-norm as
sparsity-inducing term.

4.3.2 Algorithmic Approach

Below, we specify the details of our approach for the numerical minimization of (OPT) before turning
to concrete examples in the next section.

Ensuring triangle inequalities. One crucial problem we encounter trying to solve (OPT) are the
triangle inequalities which lead to 3|T| inequality constraints causing the problem to be compu-
tationally expensive. Therefore, we aim for an approach to deal with them efficiently rooted in
our geometric setup. We achieve this by a modified line search. First, recall that the set MT =
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X4 X5 X6

µ≡ 1
6

µ1,2,6 = 0.03

µ3 = 0.6

µ4,5 = 0.15

µ2 = 0.48
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µ6 = 0.385

µ2,5 = 0.5

Figure 4.2: Reconstruction of nodal positions from elastic averages of six hand poses (grey) with dif-
ferent (convex) weights µ ∈R6 computed as minimizer of (4.25) on the NRIC manifold.

{
z ∈R2|E| | T (z) > 0

}
defines an open connected subset of R2|E|. Therefore, if we start with an ini-

tial point z0 fulfilling the triangle inequalities we only have to ensure that every iterate remains in
the set. Hence, in a line search method—where we search for a new iterate zk+1 along a direction
d k —we have to restrict this search to MT . We accomplish this using backtracking, i.e. reducing
the stepsize βk until zk+1 = zk +βk d k ∈MT holds. In implementations, this can easily achieved by
setting Qv (z) =∞ if Tτ(z) ̸> 0 for any face τ adjacent to v ∈ V0.

We can obtain an even more natural approach when we work with the nonlinear membrane
energy Wmem. Recall that in Section 4.3.1 we introduced the characterization (4.18) of M without
explicit dependence on the triangle inequalities by exploiting the growth of Wmem for triangles with
vanishing area. This now readily fits into our modified line search approach. In fact, if we com-
pare our nonlinear energy to interior point methods [NW06, Chapter 19] we see that the logarithmic
penalty in the energy takes the role of a barrier term which ensures that we stay in the admissible set
MT .

Overall, we see that in both cases we can treat the inequality constraints in the line search and
hence apply algorithms for equality-constrained optimization with a considerably lower number of
constraints. Note, that this approach can be adapted for trust-region methods by limiting the size of
the trust-region appropriately.

Augmented Lagrange. Next, we describe our approach to solving these equality-constrained prob-
lems based on the augmented Lagrange method. First, let us briefly recall the Lagrangian formula-
tion of our problem. In fact, this means we seek for a saddle point of the Lagrangian

L(z,λ) = E(z)−Q(z) ·λ (4.21)

with z ∈ R2|E| and Lagrange multiplier λ ∈ R3|V0|. The necessary condition for a saddle point (z,λ) ∈
R2|E|×R3|V0| is

DL(z,λ) = (Dz L(z,λ), DλL(z,λ))T = (DzE(z)−DzQ(z) ·λ, −Q(z))T = 0, (4.22)

where Dz and Dλ denote the Jacobian with respect to z and λ, respectively.
Instead of directly applying Newton’s method to this equation, we consider the augmented La-

grange method [Hes75; NW06]. It is a combination of the Lagrangian approach with the quadratic
penalty method where we construct a series of unconstrained optimization problems in z to approx-
imate the solution of (OPT). For the sake of completeness, we briefly recall it here. The augmented
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Figure 4.3: The tangent space reveals an infinitesimal isometric variation at the classical Steffen’s
polyhedron (middle). Indeed, extrapolating in this positive (left) resp. negative (right) direction (solely
in the θ component) allows for isometric deformations. The extrapolation is implemented via an in-
cremental addition of the infinitesimal isometric variation coupled with a back projection onto M.
The photo of Steffen’s polyhedron (far left) was generously provided by Laszlo Bardos from cutout-
foldup.com.

Lagrangian is defined by

L(z,λ,µ) = E(z)−Q(z) ·λ+ µ

2
∥Q(z)∥2

2, (4.23)

and a sequence (zk ,λk ,µk ) of approximate solutions, approximate Lagrangian multipliers, and
penalty parameters is generated by alternating between minimizing L( · ,λk ,µk ) to obtain zk+1 and
computing updates to λk and µk . Hereby, the penalty parameter µ is increased until we reach suf-
ficient attainment of the equality constraints, which is quantified by their l∞-norm being below a
user-specified threshold. On the other hand, λ is updated by an increasingly accurate estimation
of the correct multipliers λ∗ solving (4.22). This can be accomplished in various ways; one popu-
lar way which we choose to follow is to set λk+1 = λk −µk Q(zk+1). Though we cannot expect the
augmented Lagrange method to converge for arbitrary initial data, under reasonable assumptions,
one can prove that the sequence λk obtained this way converges to λ∗, which significantly improves
convergences compared to the quadratic penalty method, see for example [NW06]. We want to
remark that though our problem (OPT) involves strict inequality constraints, the local convergence
theory for the augmented Lagrange method given in [NW06, Chapter 17] still applies. The triangle
inequality constraints define an open set and thus (OPT) can be seen as an equality-constrained
problem over an open set. As [NW06, Theorem 17.5 & 17.6] are only concerned with local mini-
mizers and provide local results, they still hold if the problem is only defined on an open set after
possibly modifying constants describing local neighborhoods.

Unconstrained Optimization. Using the augmented Lagrange method leads to a series of uncon-
strained optimization problems. They are typically non-convex, i.e. we encounter indefinite Hes-
sians D2

z L of the Lagrangian. This means that a simple Newton’s method with line search might not
be an efficient and robust approach as we are not guaranteed to obtain a descent direction. To rec-
tify this, we choose a simple adaption suggested in [NW06, Section 3.4]. First, we determine a shift
τk such that the matrix D2

z L(zk ,λk ,µk )+τk Id is positive definite. This achieved by starting with an
initial estimate and then increasing τk until a Cholesky decomposition succeeds. Then, a descent
direction is obtained by solving the linear system(

D2
z L(zk ,λk ,µk )+τk Id

)
d k =−Dz L(zk ,λk ,µk ). (4.24)

Along this direction we perform an Armijo-type backtracking line search. Note again, that the local
convergence theory for Newton-type methods is still valid even though we minimize over an open
set defined by the strict triangle inequalities, cf. [Ber99, Chapter 1].

http://www.cutoutfoldup.com
http://www.cutoutfoldup.com
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θ∗= 0.75 · θ̄ reference θ∗= 1.1 · θ̄ θ∗= 1.2 · θ̄
Figure 4.4: Top: Almost isometric compression of an Origami cylinder as depicted in [BVGW16] (left,
with permission) along with the only infinitesimal isometric variation (right, indicated by arrows).
Bottom: Optimizing (4.19) on NRIC manifold with δ= 0 and hard constraints on target angles θ∗

along the upper horizontal edges (relative to the reference angle θ̄ = 2.257) leads to non-isometric
deformations with as small as possible edge length distortion (from left to right 4%, 0.3%, and 0.4%
average change of edge length).

To compute the descent direction as above, we need the gradient and the Hessian of our con-
straint functionals Q. We already evaluated DzQ ∈ R3|V0|×2|E| in (4.13) and compute for the Hessian
of Q

D2
zQ ·λ=

( ∑
v∈V0

∂zl∂zkQv ·λv

)
l ,k=1,...,2|E|

the components as

∂zl∂zkQv (z) = vec

(
n−1∑
j=0

q01(z) . . .∂zl∂zk q j , j+1(z) . . . qn−1,0(z)

)

+vec

 n−1∑
i , j=0
i ̸= j

q01(z) . . .∂zl qi ,i+1(z) . . .∂zk q j , j+1(z) . . . qn−1,0(z)

 ,

which can also be evaluated with O(nv ) cost.

4.4 Experiments and Applications

Finally, we report on a range of numerical experiments on the proposed optimization framework.
This way, we study its qualitative and quantitative properties and demonstrate its potential useful-
ness for various applications in geometry processing. To this end, we pick up the generic variational
problem (OPT) introduced in Section 4.3 together with the proposed augmented Lagrange method.
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Figure 4.5: Paper folding with local constraints for dihedral angle: simulation in vertex space
(left) leads to infinitesimal isometry violations whereas the result in NRIC is completely isometric
(right). The absolute value of discrete Gauß curvature (as angle defect) is shown using the color map
0 0.03, which is zero everywhere on the right. Furthermore, the corresponding histograms
are plotted aside the surfaces.

In the following, we discuss different objective functionals E in (4.23) and depending on the ap-
plication additional constraints. Note, however, that the constraint functional Q in (4.23), which
describes the NRIC manifold implicitly via (4.11), remains unchanged.

Constriction and Inflation. A simple example of an objective functional E is given by the dissim-
ilarity to some given z∗ on the linear space R2|E| measured by the deformation energy, i.e. E(z) =
W[z∗, z], where W is an elastic deformation energy as discussed in the previous section. For ex-
ample, in Figure 4.1, we have used the nonlinear energy defined in (4.14) along with coordinate
constraints on a certain subset of edge lengths to simulate a “constriction” of a sphere along curves
or creating cartoon-like characters by inflating for instance hands and feet (cf. [KNP14]).

Elastic averages. Let X1, . . . , Xn ∈N be a set of example shapes sharing the same connectivity. Fre-
quently, one is interested in a mean or average shape, cf. [TSSH15]. Given an elastic deformation
energy, a so-called weighted elastic average is defined to be the minimizer of a weighted sum of
elastic energies for deformations from the input shapes to the free shape. This can be translated di-
rectly to our NRIC manifold, i.e. for a given elastic deformation energy W on M and convex weights
µ ∈Rn we define the weighted elastic NRIC average as a solution of (OPT) with

E(z) =
n∑

i=1
µi W[Z (Xi ), z] . (4.25)

In Figure 4.2, we show (the reconstructions of) weighted elastic NRIC averages for a set of six hand
shapes and different weights µ1, . . . ,µ6. Here, we have used the nonlinear deformation energy (4.14)
in (4.25).

Infinitesimal rigidity. With the tangent space at hand, one can verify the infinitesimal rigidity of
a discrete surface with NRIC z ∈M. Infinitesimal rigidity is defined as the non-existence of an in-
finitesimal isometric variation w ∈ TzM with Pl w = 0 and w ̸= 0, where Pl is the projection onto the
length component, i.e. Pl (l ,θ) = l , see for example Figure 4.3. Its absence—i.e. the existence of an
infinitesimal isometric variation—is a necessary condition for a shape to not be rigid, where rigidity
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E(z) ≈ 159.6 E(z) ≈ 150.3

Figure 4.6: Once more paper folding with local constraints for dihedral angle: simulation in vertex
space (left) leads to infinitesimal isometry violations whereas the results in NRIC are completely iso-
metric (middle, right). The result in the middle shows a local minimum obtained by the augmented
Lagrange method when increasing the penalty parameter µ (too) aggressively exhibiting higher defor-
mation energy (shown below) than the right result where the penalty was increased more conserva-
tively. Triangle-averaged mean curvature is shown as color map 0 ≥ 0.005. Flat triangular
regions can only be seen in the NRIC simulations.

is defined as the non-existence of a continuous one-parameter family of isometric deformations. Or
in other words, infinitesimal rigidity implies rigidity. Note, however, that this is surely not a sufficient
condition, which we can also observe in Figure 4.4.

We verify infinitesimal rigidity by computing if the kernel of DQ(z) has a non-trivial intersection
with the θ subspace ofR2|E|, namely the kernel kerPl . This intersection is given by ker

(
BTzM Bθ

)
,

where BTzM is a matrix whose columns form a orthonormal basis of TzM and Bθ is the canonical
basis of kerPl . We compute a singular value decomposition (SVD) of this matrix and evaluate the
smallest singular valueλ0. Ifλ0 = 0, then there exists an infinitesimal isometric variation. Otherwise,
the singular value provides a quantitative measure for the lack of such an infinitesimal isometric
variation.

Isometric deformations via additional constraints. Interesting applications can be described by
considering (OPT) along with the simple objective E(z) =W[z∗, z] and additional, simple coordinate
constraints. For example, in Figure 4.1, we have seen experiments where we posed length constraints
li = l∗i for i ∈ I on the coordinates z = (l ,θ) for some index set I ⊂ E and prescribed target lengths
l∗. Similarly, we obtain an elegant way to simulate the isometric folding of a (flat) sheet of paper
given in NRIC as z∗ = (l∗,θ∗) where θ∗ = 0. To this end, we pose the length constraints le = l∗e
for all e ∈ E along with θi = const. ̸= 0 if i ∈ I for some index set I ⊂ E. Note, that under these
length constraints the nonlinear and quadratic energy approach agree if we compute the weights
in (4.19) from the reference z∗. For example, in Figure 4.5, we impose the constraint θi = π/2 for
the edges on two short line segments on two neighboring sides of the sheet. Since all edge lengths
are fixed and all other dihedral angles are degrees of freedom for the minimization of (4.14) on M,
we obtain a perfect isometric deformation as indicated by the vanishing discrete Gauß curvature
(Figure 4.5, right). In comparison, vertex-based methods as [GHDS03] or [HRWW12] do not achieve
a perfect isometry—even when computed with a very high membrane stiffness (Figure 4.5, left). For
the optimization in nodal positions, we used the energy X 7→ W[z∗, Z (X )] with a shell thickness
parameter δ = 10−3. In fact, when further reducing δ we observed numerical instabilities. This is
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Figure 4.7: Bottom: discrete geodesic in NRIC with input data from [AR18] and membrane distor-
tion as colormap (0 ≥ 1); above: Linear interpolation in ambient space R2|E| as in [FB11]
with energy distribution (green) vs. geodesic interpolation on M with constant energy distribution
(orange).

due to the fact that isometric deformations induce bending distortions only but optimizing bending
energies in terms of nodal positions is a highly nonlinear singular perturbation problem that quickly
triggers numerical issues. Conversely, the corresponding bending energy in NRIC is quadratic.

Besides vanishing Gauß curvature, pure isometric deformations exhibit further characteristics,
as illustrated in Figure 4.6. In this example, we have a very similar setup as in Figure 4.5 but we pose
the angle constraints on two opposite sides. First, let us point out that we observed convergence
of the augmented Lagrange method described above to different local minima when using different
parameters for the increase of the penalty parameter µ. We show two different local minima in
Figure 4.6 where we obtained the lowest energy value when increasing µ conservatively (shown on
the right). Now, since the NRIC results are perfectly isometric and rather smooth deformations of the
flat sheet one can indeed observe effects predicted analytically by the Hartman-Nirenberg theorem
[HN59; Hor11]. Loosely speaking, isometric deformations of a flat sheet can locally be described
either as flat patches or segments of straight lines (rulings) going to the boundary. In the middle
and right columns of Figure 4.6 one can easily identify flat triangular regions as well as a cone-like
bundle of straight lines propagating towards the boundary. These structures are not reflected by the
vertex-based numerical minimizer already discussed above (Figure 4.6, far left).

Geodesics. So far, we have only considered static examples where a single shape was optimized
subject to external forces or boundary conditions. However, one can easily generalize (OPT) to op-
timize for multiple shapes simultaneously, for instance, to simulate a kinematic behavior. Hence,
we consider the computation of time-discretized geodesics on the NRIC manifold. Recall from Sec-
tion 3.2, that with the Riemannian structure introduced in Section 4.2 the time-discrete path energy
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Figure 4.8: Intermediate shapes at t = 1/3 of a discrete geodesic between two perfectly isometric end
shapes (grey) taken from [DVTM16] obtained via NRIC optimization (orange) and vertex-based meth-
ods as in [HRWW12] (blue) resp. [FB11] (green). Note that we preserve the isometry due to our hard
length constraints. In contrast, the vertex-based methods get either stuck in local minima (blue) or
reveal artifacts such as unnatural asymmetries (green).

is given by

E [z0, . . . , zK ] = K
K∑

k=1
W[zk−1, zk ] , (4.26)

for discrete paths (γ0, . . . , zK ) with K steps. In particular, discrete geodesics—i.e. minimizers of
(4.26)—obey a constant speed property, which means there is a uniform energy distribution of
W[zk−1, zk ] ≈ const. along the curve.

The path energy in (4.26) can be considered as an objective functional in (OPT). Note, how-
ever, that this increases the number of free variables substantially. In Figure 4.7, we show different
time-discrete geodesics in NRIC where we use the quadratic deformation energy (4.19) in (4.26). In
particular, we compare for end shapes being two oppositely bent plates our NRIC geodesic (orange)
to the linear interpolation (green) in the embedding space R2|E|, which corresponds to a naive trans-
fer of the projection approach by [FB11]. As indicated by the histogram plots, the discrete constant
speed property can only be obtained for the NRIC formulation.

Furthermore, we can combine the computation of time-discrete geodesics with further con-
straints on the coordinates, e.g. to simulate isometric deformation paths. For example, in Figure 4.8,
we compare the computation of (almost) isometric geodesic paths between perfectly isometric end
shapes taken from [DVTM16] to vertex-based methods. A similar example is shown in Figure 4.9,
where the first input shape z0 = (l∗,θ∗) describes a hyperbolic monkey saddle and the second input
shape is given by a reflection zK = (l∗,−θ∗) of the saddle. Figure 4.9 demonstrates that our approach
is able to realize a perfectly isometric deformation path (orange) by enforcing lk = l∗ for all 0 < k < K ,
whereas vertex based optimization methods fail.

Time discretization. In Section 4.2, we introduced a modified time-discrete Riemannian exponen-
tial map and logarithm for the NRIC manifold. The discretization is controlled by the number of
steps K in a discrete geodesic and converges for K →∞ to the corresponding continuous notions.
We demonstrate this convergence empirically for the SCAPE dataset in Figure 4.10.
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Figure 4.9: Isometric geodesic paths. Left input shape (l∗,θ∗) as hyperbolic monkey saddle, right input
shape is the reflection (l∗,−θ∗). Comparison of discrete geodesics computed in NRIC (orange, perfectly
isometric) and by methods based on nodal positions (i.e. [HRWW12] (blue) and [FB11]). The latter
approaches are not able to resolve pure isometric geodesics as indicated by a histogram of varying
lengths on the right.

4.5 Conclusion and Outlook

In this chapter, we have introduced a framework to phrase and handle geometric variational prob-
lems on discrete surfaces in NRIC—the vector stacking edge lengths and dihedral angles. After in-
troducing the necessary background on discrete integrability conditions akin to the Gauß–Codazzi
equations originally introduced by Wang, Liu, and Tong [WLT12], we observed that they allow us
to represent the space of immersions of a discrete surface as an implicit submanifold. We demon-
strated that the readily available tangent space of this submanifold can be used to numerically study
infinitesimal isometric variations. Furthermore, we developed an approach to numerically solve
general optimization problems formulated in NRIC. Through a range of numerical examples, we
showed that this is particularly useful for the simulation of isometric deformations.

There are still a few gaps in our theoretical understanding of the discrete integrability conditions.
First, it would be worthwhile to prove that the NRIC manifold is indeed a manifold, i.e. that the
differential of the integrability conditions has constant rank. This was true in all of our numerical
experiments but remains to be shown in general. Furthermore, it would be interesting to establish
a sense of convergence of the discrete integrability conditions to their continuous counterpart—the
Gauß–Codazzi equations. This would round off our understanding of the space of immersions.

From a practical point-of-view, it would be interesting to extend the NRIC framework with ad-
ditional functionals and constraints on the geometry of the surface, such as ones describing its de-
velopability. Furthermore, while NRIC are by construction well-suited to describe local geomet-
ric properties, formulating non-local properties or points is challenging. One idea to realize them
would be to construct the immersion—or its necessary parts—using the method from the proof of
Theorem 4.6 and differentiate it. This could be a suitable task for modern automatic differentiation
software. Nevertheless, this would introduce highly nonlinear and nonlocal terms to the optimiza-
tion potentially limiting the performance of our method. This introduces the challenge of devising
different ways to combine NRIC-based modeling with point constraints. Implementation-wise, we
can currently only handle simply connected surfaces. An extension to higher-genus surfaces would
require to include integrability conditions along non-contractible paths that generate the funda-
mental group. This would lead to more global constraints in our optimization problems. Typical
examples of surfaces in geometric modeling have only a small number of generators of the homol-
ogy group. However, this necessity of complicated constraints is a general limitation of our method
compared to nodal positions.
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Figure 4.10: Convergence of time-discrete exponential and logarithm for K → ∞ on the SCAPE
dataset. For the logarithm and exponential, we show the relative error in the weighted L2-norm us-
ing Kmax = 128 as pseudo ground truth. Furthermore, due to the tangent space projection the discrete
exponential does not coincide with the inverse of the discrete logarithm. But, we observe that it is an
approximation with decreasing relative error in the weighted L2-norm for K →∞.

Finally, a potential next step would be to find a parametrization of the NRIC manifold. For closed
surfaces, it has dimension 3|V|−6 ≪ 2|E| and thus could such a parametrization drastically speed-
up computations. Amenta and Rojas [AR18] and Chern et al. [CKPS18] observed that in some cases
only edge lengths respectively dihedral angles can be used for this. However, this does not work in
general. An alternative approach would be to parametrize only a submanifold of M that we restrict
our problems to. This is the object of study in the next chapter, where we derive the submanifold of
interest from data.



Chapter 5

Sparse Principal Geodesic Analysis

Deformation synthesis
(online)

Grouped, sparse PGA
(offline)

Input data

Figure 5.1: Sparse principal geodesic analysis for data-driven nonlinear deformation synthesis. In
a precomputation phase, sparse nonlinear deformation modes (middle) are extracted from a dataset
of poses of a non-rigid shape (left) using the shape space of discrete shells and Nonlinear Rotation-
Invariant Coordinates. Then, the modes are grouped by the overlap of their support (colored frames)
and this is used to create an efficient parametrization of the corresponding data submanifold. In
the online phase, this parametrization is used to synthesize nonlinear deformations (right) at near-
realtime rates.

One of the more advanced applications of shape spaces is the computation of shape statistics.
This begins with computing nonlinear means of input data and continues with computing principal
modes of variation. The latter can be described using data approximating submanifolds of the shape
space. To accurately capture shape variability, the nonlinear structure of the shape space is often
indispensable. Linear approaches such as Principal Component Analysis (PCA) are not well-suited
to describe strongly nonlinear deformations effectively and fail to represent invariances such as to
rigid body motions. Instead, using Principal Geodesic Analysis (PGA)—a generalization of PCA to
manifolds and the prototypical alogrithm to construct data approximating submanifolds—on the
space of discrete shells leads to convincing results [HZRS18].

However, these shape space-based methods typically require the solution of nonlinear (varia-
tional) problems, which is computationally expensive. This is specifically a limitation if it is required
in the parametrization of the resulting submanifold. For example, in the case of PGA, this subman-
ifold is parametrized using the Riemannian exponential map, which for the space of discrete shells
requires solving a nonlinear equation. This parametrization is a crucial ingredient for most appli-
cations based on the constructed submanifold. Hence, if we do not have a closed form of the expo-
nential map available it is not a feasible approach if fast results are required—this was also observed
by Heeren et al. [HZRS18]. Our goal in this chapter is therefore to devise a submanifold construction
that equips it with additional structure enabling a more efficient (approximate) parametrization.

53
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A crucial ingredient for this will be the notion of sparsity of nonlinear variations. To obtain a
sensible regularization inducing such a sparsity, we will rely on the Nonlinear Rotation-Invariant
Coordinates (NRIC) discussed in the previous chapter. Their natural connection to elastic distortion
allows us to use conventional notions of spatial sparsity, which would not be reasonable in nodal
positions. Furthermore, using the NRIC manifold as a representation of the space of discrete shells
will significantly facilitate the formulation of our approach due to their inherent invariance to rigid
body motions. Finally, they will also provide our data approximating submanifold with a benevolent
extrinsic geometry—since, recall, working linearly in R2|E| already often yields acceptable results—
which will be crucial for the efficient parametrizations.

Our approach will be based on PGA. We will modify the problem of computing the approximat-
ing submanifold—which is linearized by passing to the tangent space at a mean shape—to include
a sparsity-inducing regularization. This will not only lead to sparse modes of variation but also to a
group-wise decoupling of modes, i.e. them having mostly disjoint support in NRIC. Based on this de-
coupling, we will construct two different approximate parametrizations. The first will approximate
the exponential map on individual groups by a grid-based multilinear interpolation and combine
the results affinely. This will already provide an efficient method useful for shape editing and in-
terpolation tasks and generate vital structural insights. However, since it is limited in the number
of dimensions it can handle, we will also introduce a second parametrization based on neural net-
works incorporating the product structure of our data approximating submanifold. Our method is
visually outlined in Figure 5.1.

Previous methods concerned with including sparsity or localization into data-driven reduced
modeling of deformations–such as [NVW+13; HYZ+14; WLZH17]—concentrated on linear ap-
proaches. For example, Neumann et al. [NVW+13] used a sparsity- and localization-inducing term
on nodal positions yet the linearity of the construction severely limited the size of possible defor-
mations. Follow-up work proposed to alleviate this issue by using other representations. Notably,
Wang et al. [WLZH17] and Liu et al. [LLW+19] also used edge lengths and dihedral angles for this
purpose. However, they did not consider the nonlinearity of the NRIC manifold which leads to un-
natural results (see e.g. Figure 5.14). In contrast, we use this nonlinearity to obtain a less complicated
regularization and an effective generalization to new deformations. Looking at machine learning
terminology, our approach could be considered as an attempt to ‘disentanglement learning’, i.e. the
identification of individual factors in data. Indeed, one of the potential directions of future work we
will propose in Section 5.7 will be to extend our line of work to use its insights for the construction
of autoencoders.

The remainder of this chapter will be structured as follows: We begin with a recapitulation of
PGA and with applying it to the NRIC manifold in Section 5.1. Then we will propose our modifi-
cation to obtain sparse modes in Section 5.2. For the resulting sparse modes, we will discuss the
decoupling and grid-based interpolation in Section 5.3. In Section 5.4, we will discuss the necessary
numerical tools to realize our method. We will use this for experimental validation and some proof-
of-concept applications in Section 5.5. Then, in Section 5.6, we will discuss the neural network-
based parametrization and its experimental validation. Finally, we will summarize and provide an
outlook to potential future work in Section 5.7.

Remark. The bulk of this chapter is the result of joint work with Klaus Hildebrandt and Martin Rumpf
and as such an extension of the publication [SHR20]. The neural network-based parametrization
in Section 5.6 is additionally the result of joint work with also Benedikt Wirth to be published in
[SHWR23].



5.1 PRINCIPAL GEODESIC ANALYSIS 55

5.1 Principal Geodesic Analysis

Principal Geodesic Analysis (PGA) is a technique introduced by Fletcher et al. [FLPJ04] to construct
data approximating submanifolds. It can be understood as a generalization of Principal Component
Analysis (PCA) to the nonlinear manifold setting. The primary goal is to construct a low-dimensional
submanifold such that given data points on the manifold have minimal distance to this submanifold.
To do so, PGA considers submanifolds parametrized by the Riemannian exponential map on the
tangent space at a mean point and linearizes the approximation by passing to this tangent space.
PGA was originally introduced for a shape space with medical application and has since then been
applied to many other shape spaces and general manifolds. Below, we will recapitulate the approach
in more detail and in the same breath apply it to the NRIC manifold. A schematic overview of the
resulting time-discrete PGA is given in Algorithm 1.

Algorithm 1 Time-discrete PGA in NRIC

Input: Input shapes z1, . . . , zN ∈M
Output: J-dim. approximating submanifold MJ

1: Compute the elastic mean z̄ of the input
shapes z1, . . . , zN .

2: Compute vn = LogK
z̄ (zn) for n = 1, . . . , N .

3: Perform a PCA of the vn with g z̄ as the under-
lying scalar product to compute the J princi-
pal modes of variation u1, . . . ,u J ∈ Tz̄M.

4: Set MJ = ExpK
z̄

(
span

{
u1, . . . ,u J

})
.

To construct the submanifold, we are given
N input shapes z1, . . . , zN ∈ M. As explained
above, we want to pass to a tangent space and
thus linearize the approximation problem. To
this end, we need to choose a suitable point z̄ ∈
M whose tangent space we will use. For this,
we consider the Riemannian center-of-mass1,
which is the Fréchet mean with respect ot the
Riemannian distance, i.e. given by

z̄ := argmin
z∈M

N∑
n=1

dist2
g (zn , z). (5.1)

We choose this point because working in its tangent space leads to a similar size of error for the
approximation of manifold operations by linear ones in the tangent space for all input shapes.

Then we consider geodesic submanifolds at z̄, that is J-dimensional submanifolds MJ ⊂M with
z̄ ∈ MJ such that every geodesic in MJ between z̄ and an arbitrary z ∈ MJ is also a geodesic in
the ambient manifold M. These are generalizations of affine subspaces of Euclidean space. In fact,
geodesic submanifolds of Rd at the origin are exactly linear subspaces. Geodesic submanifolds at
z̄ can be parametrized locally around z̄ over a J-dimensional linear subspace U J ⊂ Tz̄M by the
Riemannian exponential map. In the following, we assume that all input points are close enough
to z̄ such that the Riemannian logarithm (and exponential map) at z̄ are defined for them. Thus, we
have reduced the problem to finding the basis u1, . . . ,u J ∈ Tz̄M of such a subspace.

We want to construct MJ such that the distances distg (zn ,MJ ) of the input shapes to it are
minimal. Since evaluating such distances is computationally expensive in general, we aim to re-
place them by an approximation in Tz̄M. This can be done by considering the approximation
dist2

g (zn , z) ≈ ∥logz̄ zn − logz̄ z∥2
g , which is an equality if z = z̄. Now, assume again that MJ is

parametrized over a subspace U J ⊂ Tz̄M, which also forms the tangent space of MJ at z̄, i.e.
Tz̄MJ =U J . Then, since we assume MJ to be a geodesic submanifold at z̄, we have logz̄ z ∈U J and
can thus estimate

dist2
g (zn ,MJ ) = min

z∈MJ
dist2

g (zn , z) ≈ min
z∈MJ

∥logz̄ zn − logz̄ z∥2
g = ∥logz̄ zn −PU J (logz̄ zn)∥2

g , (5.2)

where PU J is the orthogonal projection onto U J with respect to g z̄ . Hence, we have to find a subspace
U J such that the distances of the input shapes’ logarithms to this space is minimal. This is, of course,

1Sometimes also called the Karcher mean, cf. [Kar14].
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Figure 5.2: Comparison of nonlinear PGA (green) with linear PCA (blue) in NRIC. The histogram
shows the distribution of errors in terms of mismatch of nodal position for reconstruction of the input
shapes. Moreover, we compare for a selected input shape (vertices shown as gray point cloud) the
approximation using PCA and PGA respectively. In both cases, we used J = 8 components and both
models achieved a linear approximation quality of about 98%.

exactly the problem statement of a PCA of these logarithms and we can phrase this variationally as

minimize
U∈R2|E|×J

W ∈RJ×N

∥V −UW ∥2
g

subject to g z̄ (ui ,u j ) = δi j for i , j ∈ {1, . . . , J },

(5.3)

where V ∈ R2|E|×N is the matrix containing the v i as columns and the columns u j of U form an
orthonormal basis of U J . The approximation error is measured in the Frobenius norm ∥·∥g weighted
according to g z̄ . Since all v i lie in the tangent space, the u j minimizing (5.3) will do so as well and
hence there is no need for an explicit tangent space constraint.

As explained above, we parametrize MJ via the exponential map, i.e. we set

MJ =M[U J ] := expz̄ (U J ) ⊂M (5.4)

as submanifold approximating the data. Moreover, for each u j , the curve t → expz̄ (t u j ) can be
interpreted as the j th nonlinear mode of shape variation of the input data. In the following sections,
we will mostly drop the explicit dependence on the dimension J and instead write U for the linear
subspace of Tz̄M and M[U ] for the corresponding submanifold.

To perform all these computation in practice, we replace the logarithm and exponential maps
with their time-discretizations introduced in Section 4.2. For the Riemannian center-of-mass, we
replace the squared distances in (5.1) by discrete path energies. During our experiments, we realized
that already K = 1 yields a sufficient approximation and thus we set

z̄ ≈ argmin
z∈M

N∑
n=1

W(zn , z), (5.5)

which is also called the elastic mean (cf. [RW09]). Performing the computation on the NRIC mani-
fold instead of in nodal positions makes them a lot more straightforward. Indeed, the approach to
PGA on the space of discrete shells proposed by Heeren et al. [HZRS18] required careful and costly
handling of (local) nonlinear variations to parametrize the manifold instead of just evaluating the
exponential map. We can circumvent this in our approach, because we have access to the shape
space’s tangent space.

In comparison to linear PCA inR2|E|, i.e. using the (projected) linear mean and linear differences,
the nonlinearity allows us to better capture the articulation of the input shapes. This means for the
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same linear approximation quality, i.e. ∥V −UW ∥2

∥V ∥2 , the actual approximation of the input shapes zn is
more accurate using nonlinear PGA and the exponential map than using linear PCA and orthogonal
projection on M. A comparison of this PGA and a PCA in NRIC coordinates is given in Figure 5.2.

However, PGA requires the computation of numerous evaluation of the Riemannian logarithm
and exponential map. This makes it costly if these evaluations are computationally expensive, which
is, in general, the case for our application. This is especially important for the exponential map
since it is used to parametrize the constructed submanifold and thus required for all its applica-
tions. For example, this makes the method established so far not feasible for realtime shape edition
applications. The computational costs of the logarithms are typically not as important as they are
performed in a pre-computation phase. Hence, in the following sections, we will modify the sub-
manifold construction by modifying (5.3) and introduce approaches to efficiently parametrize the
resulting submanifolds.

5.2 Sparsity and Decoupling

By definition, conventional PGA outputs an orthonormal set of dominant deformation modes. How-
ever, to be able to approximate deformations with only a few modes and be orthogonal, these modes
typically have a large support which largely overlaps for different modes. In this section, we endeavor
to replace these modes by sparse ones. On the one hand, this often allows to easier assign modes
a semantic meaning. For example, we would expect modes related to the movement of different
joints or muscle groups on humanoid shapes. On the other hand, we expect—and will see in the
next sections—that sparse modes with disjoint support facilitate efficient parametrization schemes
for data approximating submanifolds.

Figure 5.3: Support of deformation (left) in nodal
positions (middle left), edge lengths (middle right)
and dihedral angles (right). Change of nodal po-
sitions and absolute length change are shown on
the same scale as color map 0 ≥ 0.05, while
change of dihedral angle is shown by 0 1.3.

To compute sparse deformation modes, we
first need an appropriate notion of support and
sparsity. We could consider the change of nodal
positions for this task. However, the support
of deformations in nodal positions often dis-
agrees with the places of elastic distortions and
also semantically plausible notions of localiza-
tion. For example, in Figure 5.3, we see this phe-
nomenon for the movement of the forearm of
a humanoid model. In contrast, the support of
deformations in NRIC naturally agrees with lo-
cations of elastic distortions (cf. Section 4.3.1).
Moreover, it frequently matches our semantic

expectations—for example, in Figure 5.3. Thus, the usage of NRIC will form a crucial ingredient to
our approach below. Nevertheless, we expect it to generalize to other shape spaces where a sensible
sparsity regularization—e.g. through appropriate spatial coordinates—is available.

Using NRIC, we follow the common approach of considering a sparsity-inducing norm. How-
ever, using an unweighted l 1-norm on tangent vectors would be problematic as they consist of edge
lengths and dihedral angles varying on vastly different scales. To this end, we consider the family
of weighted Lp -norms from Section 4.3.1. With this L1-norm at hand, we generalize the PGA to a
Sparse PGA (SPGA) as follows.

minimize
U∈R2|E|×J

W ∈RJ×N

∥V −UW ∥2
g +λ

J∑
j=1

∥u j∥1

subject to u j ∈ Tz̄M for j ∈ {1, . . . , J }

max
i∈RN

|w j i | ≤ 1 for j ∈ {1, . . . , J }.

(5.6)
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We dropped the orthonormality constraints as we do not aim for an orthonormal basis anymore
but favor sparsity. To ensure that the magnitude of the coordinates of the u j does not simply shrink
to achieve a small L1-norm while the weights grow accordingly, we introduce a bound on the mag-
nitude of the weights’ entries. Different from standard PGA, we have to impose that the modes u j

are indeed tangent vectors in Tz̄M, which ensures that they yield admissible, infinitesimal deforma-
tions of the mean z̄. Dropping this constraint, which can be written equivalently as DzQ(z̄)u j = 0,

Figure 5.4: Comparison to sparse linear PCA with
Euclidean metric in R2|E|. The dihedral angle sup-
port of a sparse PCA mode which has no length
component at all is shown on the left. This leads
to mesh artifacts already in case of short time ex-
trapolation as seen in the middle picture. Further-
more, this is prohibitive also for shape approxima-
tion, which can be seen in the last picture show-
ing the failure to approximate an input shape eas-
ily handled even by the linear PCA in R2|E|.

one would leave the NRIC manifold M and
there is no guarantee that u j represents a geo-
metrically admissible variation of the underly-
ing triangular mesh. For example, in Figure 5.4,
we added just the L1-regularization to a linear
PCA in NRIC. As we can see, this led to modes of
variation with non-matching support between
edge lengths and dihedral angles. Hence, their
usability for approximation and the synthesis of
new shapes is quite limited since it precludes
extrapolation via the exponential map.

In contrast to, for example, Neumann et al.
[NVW+13], we do not include a term that ex-
plicitly enforces a connected, localized support
of the deformation modes. This is a natural
byproduct of the combination of data approxi-
mation, sparsity, and admissibility—i.e. the tan-
gent space constraint—in our approach. For
the same reason, SPGA modes tend to (group-wise) decouple which we will see in more detail in
the next section.

Finally, we can—again by virtue of the exponential map—define a submanifold

M[U ] = {ExpK
z̄ (v) | v ∈U }

of the NRIC manifold M containing nonlinear deformations.

5.3 Submanifold Decomposition and Deformation Synthesis

In this section, we will propose an approximation ofM[U ] withU originating from the sparse modes
computed in (5.6) that can be computed efficiently. We will do this in two steps: First, we will intro-
duce an approximate direct sum structure on M[U ] by grouping sparse modes and then we will
efficiently approximate the exponential map on the individual summands using a multilinear inter-
polation. An alternative approach that uses neural networks to approximate the exponential maps
and the direct sum structure will be introduced in Section 5.6

5.3.1 Submanifold Approximation

In many applications, the sparse modes (e.g. see Figure 5.5) can at least partially be split into subsets
with pairwise decoupled support. For example, one expects distinct, localized articulations for cer-
tain joints and muscle groups on humanoid models. Hence, the supports of corresponding groups
of sparse modes representing these articulations are expected to be well separated. Furthermore, as
pointed out in Figure 5.7, the support of these tangent vectors in Tz̄M⊂R2|E| is only very moderately
extended under application of the exponential ExpK

z̄ . Given such a strong separation of supports of
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two subspaces Ua and Ub one observes that

ExpK
z̄ (ua +ub)− z̄ ≈ (ExpK

z̄ (ua)− z̄)+ (ExpK
z̄ (ub)− z̄)

BA C

Figure 5.5: Three sparse modes A,B,C
for the human model (used in Figure 5.6
and Figure 5.10).

for ua ∈ Ua and ub ∈ Ub . This is certainly not the case
for subspaces corresponding to modes with overlapping
supports, which is illustrated in Figure 5.6 using the in-
set modes. The defect of a potentially non-exact separa-
tion of supports after applying the exponential map can
be measured using

DExp(ua ,ub) :=
(|ExpK

z̄ (ua)− z̄|, |ExpK
z̄ (ub)− z̄|)2

∥ExpK
z̄ (ua)− z̄∥2 ∥ExpK

z̄ (ub)− z̄∥2
,

where (·, ·)2 is the scalar product associated with the
weighted L2-norm introduced in Section 4.3.1, see also
Figure 5.7. Before, we have already argued that the sup-
port of the tangent vectors is only moderately extended under the exponential map. The same then
holds for the coupling of pairs of tangent vectors, which allows us to measure the separation of
modes and induced submanifolds ExpK

z̄ (Ua) and ExpK
z̄ (UK

b ) using

D(ua ,ub) := (|ua |, |ub |)2

∥ua∥2 ∥ub∥2
,

which can also be seen when comparing Figure 5.8 and Figure 5.7.
This observation motivates the following splitting approach. Let us suppose that the space

U ⊂ Tz̄M spanned by the sparse principal modes u1, . . . ,u J can be written as the direct sum of L
subspaces Ul for l = 1, . . . ,L, i.e.

U =U1 ⊕ U2 ⊕·· ·⊕ UL ,

where each of these subspaces is spanned by a subset of the principal modes. In fact, as discussed
above, we suppose that due to our sparse PGA approach the subspaces U j can be chosen to have —
at least approximately—pairwise disjoint supports. For each vector v ∈U , we have a corresponding
decomposition v = v1 + v2 + . . .+ vL with vl ∈ Ul . Now, we consider a superposition of exponential
maps via summation of NRIC coordinates

Z[v] = z̄ +
L∑

l=1
(zl − z̄) with zl = ExpK

z̄ vl .

Finally, Z[v] is not necessarily on M and we have to project back onto M and obtain

z[v] = PMZ[v].

This defines the submanifold

M[U1, . . . ,UL] = {z[v] | v ∈U } ⊂M

which approximates the original SPGA submanifold M[U ].

5.3.2 Efficient Deformation Synthesis

So far, we introduced an approximation of the submanifold by splitting the application of the ex-
ponential map into applications on smaller subspaces. It remains to show how these exponential



60 CHAPTER 5 SPARSE PRINCIPAL GEODESIC ANALYSIS

Mode A
M

ode B

10−6

10−5

10−4

10−3

10−2

10−1

1a

1b

1c

1b 1c1a

Mode A
M

ode C

10−6

10−5

10−4

10−3

10−2

10−1

2a

2b

2c

2b 2c2a

Figure 5.6: Comparison of splitting error for two separated modes (top row) and two overlapping
modes (bottom) (cf. Figure 5.5). We consider a deformation synthesis z[v], which treats the modes sep-
arately and show the relative approximation error in the energy, i.e. W[ExpK

z̄ (v), z[v]]/W[z̄,ExpK
z̄ (v)],

on periodically distributed samples as bar plot along with three examples (approximation in yellow,
correct extrapolation as purple point cloud).

maps and the needed projection can be approximated efficiently to enable the fast synthesis of non-
linearly deformed shapes on the submanifold. Here, we propose an approach based on sampling
in a preprocessing phase and multilinear interpolation in the online phase. Later, in Section 5.6, we
will propose an alternative approach based on neural networks.

We first consider a single subspace Ul of dimension d with basis ul
1, . . . ,ul

d . In this subspace,

we take a lattice
{∑d

n=1αnσul
n |α ∈Zd

}
with mesh size σ ∈ R. For α ∈ Zd , we denote by vα =∑d

n=1αnσul
n the corresponding lattice point. Now, an arbitrary v = ∑d

n=1 wn(v)ul
n ∈ Ul lies in a

cell of the lattice with nodes vα(v)+β for β ∈ {0,1}d , where α(v) = ⌊w(v)
σ ⌋ ∈ Zd elementwise. In two

dimensions, this would mean that α(v) identifies the lattice point to the lower-left of v . To approxi-
mate ExpK

z̄ (v), we consider a piecewise multilinear interpolation Zσ,l of the values at lattice points,
i.e.

Zσ,l [v] := ∑
β∈{0,1}d

wβ(v)ExpK
z̄ (vα(v)+β)

where the wβ(v) are the multilinear interpolation weights (cf. [WZ88]) determined such that v =
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Figure 5.7: DExp(ui ,u j ) is plotted as heatmap on the left for i , j ∈ {1, . . . , J }. On the right, we show
the extrapolation ExpK

z̄ (u) of a randomly sampled mode u ∈U , once colored according to the absolute
tangential mode |u| (left) and once colored according to the absolute difference |ExpK

z̄ (u)− z̄| (right)
both on the same color scale underlining the close similarity of the support of u ∈ Tz̄M ⊂ R2|E| and
ExpK

z̄ (u)− z̄ ∈R2|E|.

∑
β∈{0,1}d wβ(v) vα(v)+β. In the offline phase, exponentials of lattice points are computed for a suit-

able finite subset ofZd and stored in lookup tables, which can be used to cheaply evaluate the piece-
wise multilinear interpolation in the online phase.

Considering the whole subspace U =U1 ⊕ . . .⊕ UL , we use for general v ∈U the splitting v = v1 +
. . .+ vL and repeat the interpolation above for each subspace. Then, we evaluate the superposition
of these interpolations

Zσ[v] = z̄ +
L∑

l=1

(
Zσ,l [vl ]− z̄

)
for the actual synthesis of nonlinear deformations. As above for Z[v] the superposition Zσ[v] is in
general not in M and we define the submanifold Mσ[U1, . . . ,UL] = {zσ[u] | u ∈U } for

zσ[u] = PMZσ[u]

which again is expected to approximate the submanifold M[U ]. The necessity of the projection is
demonstrated in Figure 5.9.

Surely, when dealing with the submanifolds ExpK
z̄ (Ul ) in our computational setup, we are in-

terested only in compact subsets of the subspace Ul representing plausible deformations. For the
multilinear interpolation of precomputed samples on a rectangular grid to be a feasible option, we
have to restrict to subspaces Ul of low dimensionality between one and four. In many applications,
it turned out that this is sufficient to achieve practicable results. Nevertheless, it is a limitation of the
approach that we will address in Section 5.6.

A comparison of the exact submanifold M[Ul ] = ExpK
z̄ (Ul ) and the approximation Mσ[Ul ] for a

single two dimensional subspace Ul is shown in Figure 5.10. The efficiency of this approach based
on multilinear interpolation of precomputed samples is evaluated in the next section and in partic-
ular in Table 5.4.

5.4 Numerical Implementation

Having described the variational problems underlying our approach, we turn to their numerical
solution in this section. The approach to the variational problems in NRIC and nodal positions
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Figure 5.8: Coupling of tangential modes on a face data set [ZSCS04] exhibiting non-isometric de-
formations. The heatmap shows the coupling between the different tangential modes, i.e. D(ui ,u j )
for i , j ∈ {1, . . . , J }. It is accompanied by the extrapolated modes colored according to the absolute
tangential modes |ui | (weighted as in the L1-norm), each on a different scale to improve the visual
appearance of the modes.

resulting from time-discrete geodesic calculus corresponds to the approaches from Chapter 3 and
Chapter 4 and we only briefly describe a multi-resolution scheme to make these methods more effi-
cient below. What remains is the solution of the SPGA problem (5.6) on tangential modes, for which
we will introduce an approach based on quadratic matrix programming.

Multi-Resolution Scheme. We use a multi-resolution approach to enable fast computations while
retaining the possibility to produce high-quality deformations. In this approach, the input shapes
are coarsened by one of the following two methods: For some examples, we used an iterative
edge collapse approach based on minimizing the quadric error metric [GH97] computed in groups
[MG03] to preserve the dense correspondence between input shapes. For other examples, we
remeshed a reference input shape using OpenFlipper [MK12] and computed coarse representations
of the other input shapes with the same approach as in the prolongation described next. In both
cases, the coarse results were prolongated to the fine level using a representation of the fine mesh
vertices in terms of intrinsic positions and normal displacement with respect to the coarse mesh,
which is computed on a reference shape similar to [KMP07]. See Table 5.4 for a comparison of
original and coarse resolutions of the different input data.

Software. We have implemented our method in C++ with the Geometric Optimization And Simu-
lation Toolbox (GOAST) [HS+20], where we use the Eigen library [GJ+10] for numerical linear algebra
and CHOLMOD [CDHR08] and UMFPACK [Dav04] from the SuiteSparse collection as direct linear
solvers. For the quadratic problem (5.19), we use MOSEK [MOS20] as efficient off-the-shelf solver.

5.4.1 Quadratic Matrix Programming

We solve (5.6) by alternatingly solving for U while keeping W fixed and vice versa. When U is fixed,
solving for W becomes a straightforward quadratic optimization problem. However, solving for U is
more difficult due to the regularization term and the tangent space constraint.

To solve for the sparse modes efficiently, we will first rephrase (5.6) for fixed weights W as a non-
linear matrix optimization problem. Then, we will vectorize it to obtain a nonlinear optimization
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Figure 5.9: Two comparisons of projected shapes zσ[v] (yellow) with an adaptive frame-based recon-
struction from [SHHR20] of Zσ[v] without projecting it on the manifold (gray). This shows that the
projection is required.

problem in a more common formulation. Finally, we will relax the L1-penalty term as proposed by
Tibshirani [Tib96] and Brandt and Hildebrandt [BH17] to obtain a quadratic problem. This mirrors
an approach commonly used for quadratic matrix programming (QMP) problems [Bec07] and we
will also briefly show an alternative approach that first relaxes the L1-penalty in (5.6) to obtain a
QMP problem.

Matrix optimization. Let us begin by reformulating the matrix optimization problem to pre-
pare the relaxation. We denote by G ∈ R2|E|×2|E| the matrix representation of the metric g z̄ , i.e.
G = ∂2

22W[z̄, z̄]. By the definition of the (weighted) Frobenius norm, we have

∥V −UW ∥2
g = tr((V −UW )T G(V −UW ))

= tr(W T U T GUW )−2tr(V T GUW )+ tr(V T GV )

= tr(W T U T GUW )−2tr(W V T GU )+ tr(V T GV ).

To rephrase the regularization term, we denote by M ∈RJ×2|E| the matrix whose rows are all equal to
the weight vector of the L1-norm from Section 4.3.1. This allows the following reformulation

J∑
j=1

∥u j∥1 = tr
(
M T |U |) , |U | := (|uk j |

)
k=1,...,2|E|

j=1,...,J
.

We express the tangent space constraint using the quaternion integrability operator Q, i.e.

DzQ(z̄)U = 0 ∈R3|V0|×J

Together, this yields for a given W the problem

minimize
U∈R2|E|×J

tr(W T U T GUW )−2tr((GV W T )T U )+λ tr(M T |U |)+ tr(V T GV )

subject to DzQ(z̄)U = 0.
(5.7)

While this problem already closely resembles a QMP problem, the choice of the L1-term still renders
it nonlinear.
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Figure 5.10: Approximation of the exponential map by multilinear interpolation of lattice points
for two strongly coupled modes (cf. Figure 5.5). On the left, we show the lattice (grey) in the two-
dimensional subspace along with randomly sampled points colored according to the logarithm of
their relative approximation error in the energy, i.e. W[ExpK

z̄ (v), zσ[v]]/W[z̄,ExpK
z̄ (v)] . On the right,

selected extrapolated lattice points are shown in purple and we highlight the quality of the approx-
imation of shapes (purple point clouds) by our deformation synthesis approach (yellow) for samples
with relatively high approximation error.

Vectorization. Next, we vectorize the problem, i.e. we replace the matrix as primary degree of free-
dom by its vectorization. By vectorization, we refer to the map

vec: Rn×m →Rnm

A 7→ (a1,1, . . . , an,1, a1,2, . . . , an,2, . . . , an,m)T ,

i.e. concatenating the columns of a matrix to a single vector, which is an isomorphism. Hence, we
aim at an optimization problem in R2|E|J such that its solution are exactly the vectorizations of solu-
tions of (5.7). To this end, we reformulate all terms appearing in (5.7) in the vectorization of U . The
essential formulas can be found in [Bec07] and we only apply them to our problem here.

For the quadratic term, we obtain

tr(W T U T MUW ) = vec(UW )T (IdN ⊗M)vec(UW ) (5.8)

= vec(U )T (W T ⊗ Id2|E|)T (IdN ⊗M)(W T ⊗ Id2|E|)vec(U ) (5.9)

= vec(U )T (W W T ⊗M)vec(U ), (5.10)

while we get for the linear term

tr(W V T MU ) = vec(MV W T )T vec(U ). (5.11)

Now, for the nonlinear term note that taking absolute values of the entries of a matrix/vector and
vectorization commute, i.e. vec(|A|) = |vec(A)|. This yields

tr
(
M T |U |)= vec(M)T |vec(U )|. (5.12)
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Finally, we use the following equivalence for the constraint

DzQ(z̄) ·U = 0 ∈R3|V|×J ⇐⇒ (IdJ ⊗DzQ(z̄))vec(U ) = 0 ∈R3|V|J . (5.13)

Combining all this, we arrive at the following vector optimization problem where we use a boldface
u to denote that we refer to a vectorization and not a single basis vector,

minimize
u∈R2|E|J

uT (W W T ⊗M)u−2vec(MV W T )T u+λvec(M)T |u|+ tr(V T MV )

subject to (IdJ ⊗DzQ(z̄))u = 0.
(5.14)

Relaxation. Finally, we relax the L1-penalty term as in [BH17; Tib96] to obtain the quadratic prob-
lem. To this end, we introduce non-negative variables, i.e.

u = u+−u−, u+,u− ≥ 0, (5.15)

and define the combined variable

ũ =
(

u+

u−
)
∈R4|E|J . (5.16)

Then, by the componentwise triangle inequality, we obtain the following linear upper bound for the
L1-term

vec(M)T |u| ≤ vec(M)T (u++u−) =
((

1
1

)
⊗vec(M)

)T

ũ (5.17)

Reformulating the complete vectorized problem (5.14) in ũ leads to

minimize
ũ∈R4|E|J

ũT (E ⊗W W T ⊗M)ũ+
((

1
1

)
⊗vec(M)−

(
2
−2

)
⊗vec(MV W T )

)T

ũ+ tr(V T MV )

subject to
(
1 −1

)⊗ (IdJ ⊗DzQ(z̄))ũ = 0 and ũ ≥ 0

(5.18)

with E :=
(

1 −1
−1 1

)
. The above triangle inequality is an equality, i.e. |u| = u++u−, if u+⊙u− = 0.

Hence, the solutions u+,u− of (5.18) have disjoint support because, otherwise, we could move values
from one vector to the other without changing the value of the objective term while decreasing the
regularization term. Thus, u = u+−u− is indeed the solution of the original problem. To solve the
relaxed problem, one can utilize standard numerical software for quadratic programming.

Relaxing the matrix problem. Alternatively, we could have switched the order of vectorization and
relaxation and, thus, relaxed the L1-penalty in the matrix formulation. To this end, we introduce
non-negative variables U+, U− ∈R2|E|×J with

U =U+−U−, U+, U− ≥ 0,

This way, using the componentwise triangle inequality |U | ≤U++U− we obtain the estimate

tr(M T |U |) ≤ tr(M T (U++U−))

for the L1-term. Analogously, adapting the other terms in (5.7) we finally arrive at the relaxed
quadratic matrix programming problem

minimize
U+∈R2|E|×J

U−∈R2|E|×J

tr

(
W T

(
U+

U−
)T (

G −G
−G G

)(
U+

U−
)

W

)
+ tr

((
λM +2GV W T

λM −2GV W T

)T (
U+

U−
))

+ tr(V T GV )

subject to DzQ(z̄)U+−DzQ(z̄)U− = 0, U+ ≥ 0, U− ≥ 0.

(5.19)

By vectorizing this QMP problem, we again arrive at (5.18).
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Figure 5.11: Comparison of multiple choices of J and λ on the Face dataset. The linear approxima-
tion quality is measured as ∥V −UW ∥2/∥V ∥2 and weighted L1-norm and overlap are computed as
described before. Noticeably larger values for λ led to vanishing modes. In this case, we chose J = 10
and λ= 250.

5.5 Experiments and Applications

After introducing our submanifold construction and the numerical tools necessary for it, we will now
consider a range of experiments to illuminate its practical properties. Furthermore, we will discuss
potential applications in geometric modeling.

Datasets. We evaluated our approach on four different datasets. The first dataset consists of 71 hu-
manoid shapes from Anguelov et al. [ASK+05] called SCAPE. For the second dataset, we considered
six hand shapes from Yeh et al. [YLSL11] and upsampled them by computing 126 weighted elastic av-
erages of these six shapes. Furthermore, we took a set of 384 face meshes from Zhang et al. [ZSCS04]
originating from a 3D-scanned time series of a person expressing different emotions. Finally, we also
considered a set of 50 meshes of a horse in a galloping sequence from Sumner and Popović [SP04].
The corresponding mesh sizes of the input data and coarsened versions are listed in Table 5.4.

Selection of number of modes and sparsity. In the computation of modes, we have two param-
eters which are currently chosen manually based on heuristics: The number of modes J and the
sparsity weight λ in (5.6). This is linked to a trade-off between the approximation quality of the
model, the sparsity and overlap of support of the modes, and the size of the model. In Figure 5.11,
we compare these quantitatively for a number of choices and also to PGA. For the approximation,
not only the average overlap is important but also the resulting subspace dimensions because the
grid-based interpolation is only feasible for up to four dimensions. Thus, a higher number of modes
might lead to subspace violating this constraint and is thus not necessarily beneficial.

Selection of coupling spaces. The selection of the subspace decomposition U = U1 ⊕ ·· · ⊕UL—
i.e. the grouping of the sparse tangential modes based on their coupling—is an important step to
obtaining high-quality results with our proposed method as exemplarily pointed out in Figure 5.6.
In our implementation, we employ spectral clustering [SM00] of a set of modes using the sparse
tangential coupling D(·, ·) as the underlying similarity measure. To this end, we use the coupling
matrix of the sparse modes, cf. Figure 5.8, as affinity or similarity matrix. The number of clusters
is then determined such that the resulting dimensionality of the subspaces Ul is in the range 1−4,
see also Figure 5.12, and thus small enough for the lattice generation described in Section 5.3.2 to
be computationally feasible. The decomposition into subspaces of different dimensions used in our



5.5 EXPERIMENTS AND APPLICATIONS 67

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of clusters

0

5

10

15

20

M
ax

.s
u

b
sp

ac
e

d
im

en
si

on 20

15

8 7
5 6

4 4 3 3 3 3 3 3 2 2 2 2 2

Figure 5.12: Comparison of maximal subspace dimension for different numbers of clusters on the
Horse dataset. The selected number highlighted in gray.

examples is listed in Table 5.1. Examples of groups of modes extracted from the SCAPE data set
are already shown in Figure 5.1. The examples illustrate that modes that move the same part of the
body, for example the left leg in the leftmost groups, can be in different groups. The reason is that
the distortions induced by the modes are located in different areas of the body, for example, in the
hip and knee regions for the leftmost groups.

Example J 1D 2D 3D 4D
SCAPE 40 0 5 6 3
Hands 12 0 1 2 1
Faces 10 4 1 0 1
Horse 20 0 2 4 1

Table 5.1: Distribution of the dimensionality of subspaces Ul used in the different examples.

Comparison to ADMM. Another method commonly used to compute sparse deformation compo-
nents is the alternating direction method of multipliers (ADMM), cf. [NVW+13; HYZ+14; WLZH17].
We have also investigated this approach to solve for the sparse modes. To deal with the tangent space
constraint in (5.6), one needs to add a third term to the commonly used ADMM problem represent-
ing this constraint as a convex indicator function. To see this, consider the general optimization
problem

minimize
u∈R2|E|J

∥Wu−v∥2
G +λ∥u∥1

subject to Au = 0,
(5.20)

where in our case u ∈ R2|E|J are the vectorized tangent modes, v = vec(V ) ∈ R2|E|N the vectorized
logarithms, W = Id2|E|⊗W ∈ R2|E|N×2|E|J the fixed weights as applied to vectorized modes, ∥·∥1 the
weighted L1-norm, G = IdN ⊗G ∈ R2|E|N×2|E|N the vectorized inner product, and A = IdJ ⊗DzQ(z̄) ∈
R3|V|J×2|E|J the vectorized tangent space constraints. Then we rewrite it as

minimize
x,y,z∈R2|E|J

∥Wx−v∥2
G + ιA(y)+λ∥z∥1

subject to x−z = y−z = 0,
(5.21)

where ιA(y) = 0 if Ay = 0 and ιA(y) =∞ else. Then—as usual for ADMM—one alternatingly evaluates
the proximal mappings for each term, i.e. in each iteration k of the algorithm the following updates
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are computed:

xk+1 = argmin
x∈R2|E|J

∥Wx−v∥2
G + η

2
∥x−zk +γk

x∥2
2,

yk+1 = argmin
y∈R2|E|J

ιA(y)+ η

2
∥y−zk +γk

y∥2
2,

zk+1 = argmin
z∈R2|E|J

λ∥z∥1 + η

2
∥z− 1

2 (xk+1 +yk+1)− 1
2 (γk

x +γk
y )∥2

2,

γk+1
x = γk

x +xk+1 −zk+1,

γk+1
y = γk

y +yk+1 −zk+1,

where γk+1
x and γk+1

y are estimates of the Lagrange multipliers for the constraints x−z = 0 and y−z =
0, respectively, and η > 0 is a stepsize parameter. The three minimization problems for xk+1, yk+1,
and zk+1 have a closed form solution. This approach can be seen as an application of the Augmented
Lagrangian method to (5.21) and a more detailed explanation of this can, for example, be found
in [BPC+11]. However, we observed a slower convergence of this approach, i.e. compared to our
approach outlined in Section 5.4.1 the objective value was larger after the same number of outer
iterations while still requiring more time per outer iteration. Let us note that this picture might
change for larger problems. We provide objective values and runtimes for the two methods on our
examples in Table 5.2.

SCAPE Hands Faces
Solver Obj. Time Obj. Time Obj. Time
QMP 2618 1553s 575 205s 28765 127s
ADMM 2755 2092s 629 382s 31114 408s

Table 5.2: Objective values after ten outer iterations and runtime per outer iteration for QMP and
ADMM. For ADMM, we choose the penalty parameters as η= 10 after comparing multiple options.

Comparison PGA to SPGA. In comparison to PGA, our SPGA computes sparse modes at the ex-
pense of approximation accurateness. Hence, to achieve the same approximation quality with SPGA
as with PGA one will typically need more modes (cf. Figure 5.11). The sparsity, however, is crucial for
the submanifold approximation in Section 5.3.1, as otherwise the resulting error would be large (cf.
Figure 5.6). When working with PGA, we cannot use our efficient deformation synthesis and instead
have to directly use the nonlinear exponential map. In editing applications, when additional handle
constraints come into play, this implies that we have to evaluate derivatives of the discrete expo-
nential and hence use methods from PDE-constrained optimization, see [HZRS18]. This results in
online runtimes which are far from interactive rates (Table 5.3). In contrast, our approximation built
on SPGA allows for interactive rates but requires more runtime in the offline phase for the quadratic
optimization and sampling of the exponential map.

Deformation synthesis. A central aim of our method is the fast synthesis of high-quality and large
nonlinear deformations in articulated motion, i.e. the evaluation of our discrete approximation zσ of
the exponential map for varying subspace coordinates α ∈ RJ . We demonstrate this by considering
curves C : R→ U in the subspace and their counterpart c : R→ Mσ on the manifold M obtained
via our deformation synthesis, i.e. c(t ) := zσ[C (t )]. Such curves can, for example, be used to obtain
smooth deformations interpolating given key poses on the manifold. In Figure 5.13, we show such
an interpolating curve based on a Catmull–Rom spline t 7→ C (t ) [CR74], for a set of hand poses.
Recall, that we follow Fröhlich and Botsch [FB11] to compute the projection onto the manifold and
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PGA SPGA
Example Off- Online Off- Online
Figure 5.13 (Interpolation) 3min 3s 90min 60ms
Figure 5.14 (Fitting) 2min 919s∗ 660min 10s

(100ms)

Table 5.3: Comparison of runtimes for PGA and SPGA. In the interpolation case, we report the average
time to evaluate the spline in Figure 5.13 at 120 evenly spaced points. In the fitting case, the total
amount of time to produce the results in Figure 5.14 is reported and for SPGA, in brackets, also the
time for incremental editing steps. ∗ as reported in [HZRS18]

Figure 5.13: An interpolating deformation path computed using our method. The interpolation is ob-
tained by fitting a periodic Catmull–Rom spline through the subspace coordinates of the input shapes
(shown in grey) and evaluating our discrete parametrization for evenly spaced points on the spline
(yellow).

formulate it as nonlinear least squares problem in nodal positions, i.e. minX∈R3|V|∥(l ,θ)(X )−Zσ[u]∥2
g .

This directly gives us the nodal positions needed for visualizations and can be solved efficiently using
the Gauß–Newton method. Then, evaluating the curve t 7→ zσ[C (t )] along consecutive points can be
done in (near) realtime in these examples as each step only needs very few Gauß–Newton iterations
to compute the projection PM due to the good initialization from the previous step. See also the
paragraph Timings below.

Mesh editing. The deformation synthesis restricted to the submanifold Mσ[U1, . . . ,UL] can also
be used as a so-called deformation prior for mesh editing—i.e. in a regularization term encourag-
ing reasonable deformations. In this case, we assume the editing information is given as M sparse
handle positions x1, . . . , xM ∈ R3 corresponding to the positions of vertices v1, . . . , vM ∈ V. Then we
perform the editing via a quadratic penalty method, i.e. we consider a series of optimization prob-
lems of the form

minimize
X∈R3|V|

u∈U
∥(l ,θ)(X )−Zσ[u]∥2

g +γ
M∑

m=1
∥Xvm −xm∥2

R3 (5.22)

for increasing γ, each again solved with Gauß–Newton. We choose the starting value for γ and in-
crease it by a fixed factor until the mesh fulfills the handle positions up to a pre-defined tolerance.

In Figure 5.14, we compare this mesh editing approach to other state-of-the-art, data-driven ap-
proaches. To compare our approach to [LLW+19], we replicated their approach without localization,
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[FB11] [LLW+19]*
z̄

[HZRS18] Ours

[GLL+16]

Figure 5.14: Handle editing comparison on SCAPE. Top row: Rest pose, results using the methods in
[FB11], [GLL+16], and an adapted version of [LLW+19] (see main text for more information); Bottom
row: results from [HZRS18] and ours along with close ups of the right elbows.

i.e. using a spatially constant l1-term in the mode computation, and with a fixed penalty parameter
(see the right-most example in the top row). The other two methods, [FB11] and [GLL+16], are ap-
plied as described in the original publications. Our method delivers plausible deformations on-par
with [HZRS18], while being nearly two orders of magnitude faster. Some details are even superior,
for example, the bending of the right arm, shown in the close-ups, appears more natural in our re-
sults with the sharp elbow contour being better preserved.

Using the superposition of nonlinear subspaces represented by zσ instead of the linear combi-
nations of modes in R2|E| allows our method to generalize better for edits requiring deformations far
from the input data set. For example, in Figure 5.15, we consider the challenging example of drag-
ging the right hind leg outwards of a horse shape, while the input data only consists of a galloping
sequence. Here, besides the penalty approach used in Figure 5.14, we used hard constraints for the
vertex positions at the handles. We compare the editing via a linear basis and hard constraints in
R2|E| (left) with editing based on the large deformation interpolation zσ[·], both for hard constraints
(middle), and using the quadratic penalty method (5.22) (right) The linear approach leads to un-
natural bending similar to the one reported by Liu et al. [LLW+19, Figure 17], where the latter two
approaches yield far more natural results.

Timings. In Table 5.4, we list detailed timings of all components of our method. For the quadratic
problem, we report runtimes with enabled parallelization, while it was disabled for all other timings.
The offline phase was performed on a workstation with two AMD EPYC 7601 CPUs, the high number
of cores allows to efficiently parallelize the offline phase by computing many logarithms or exponen-
tial maps in parallel. All other results were computed on a laptop with an Intel Core i7-9750H CPU.

In the preprocessing phase, we used 25 outer iterations, i.e. solving once for the weights and
modes, in each of the examples. Precomputing the exponential for lattice points (cf. Section 5.3.2)
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Figure 5.15: Challenging handle editing example on the horse as suggested in [LLW+19]. Left to right:
editing with linear interpolation in R2|E| and hard constraints; editing with nonlinear interpolation
and hard constraints; editing with nonlinear interpolation and soft constraints, i.e. via the quadratic
penalty method (5.22).

Data & Parameters Preprocessing Online

Dataset N |V| |Vc| J Mean Log QMP Exp
Zσ–
eval.

GN iter
(proj)

GN iter
(edit)

SCAPE 71 12.5k 1.3k 40 105s 30s 1553s 3s 0.5ms 18ms 100ms
Hands 126∗ 6.1k 1.9k 12 230s 90s 205s 6s 0.3ms 25ms –
Faces 384 24k 2.1k 10 420s 70s 127s 6s 0.3ms 35ms –
Horse 50 8.5k 1.3k 20 100s 50s 375s 4s 0.3ms 16ms 60ms

Table 5.4: Overview of used datasets with corresponding preprocessing and online timings listing from
left to right: the data set, the number of input shapes N , the number of vertices of the full mesh |V|
and the coarse mesh |Vc|, the number of modes J , the timings in the preprocessing phase to compute
the mean z̄, a discrete logarithm Logz̄ , one solution of the quadratic matrix programming problem,
a discrete exponential map ExpK

z̄ , and the timings in the online phase to compute the multilinear
interpolations Zσ, a Gauß–Newton iteration used for the projection on the manifold M, and a Gauß–
Newton iteration required in the mesh editing context.

∗ obtained from six shapes by computing weighted elastic averages

required about 3000 (horse), 4000 (hands), 20000 (human), and 30000 (face) evaluations for the re-
spective examples.

In the online phase, evaluating our deformation synthesis zσ for a random v ∈U using the mean
shape as initialization needed in all examples at most ten Gauß–Newton iterations. For larger, in-
stant changes, such as in Figures 5.14 and 5.15, we need multiple increases of the penalty parameter
in (5.22) and thus a larger number of iterations. Concretely, the computation for the result in Fig-
ure 5.14 took about ten seconds while for Figure 5.15 it took about five seconds. In applications with
incremental changes, we only need a very small number of Gauß–Newton iterations. For example,
each step of a spline for the shapes in Figure 5.13 evaluated at 120 evenly spaced points required two
to three iterations, while for the incremental handle editing (shown in Figures 5.1 and 1.2) even one
was sufficient. This makes the method applicable for interactive applications.
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Figure 5.16: Approximation of the Freaky Torus. We show the reference shape z̄ in grey, the approx-
imation of ExpK

z̄ v by affine combination of exact factors in green, by a monolithic network in blue,
and by our composite network in yellow. The correct vertex positions of ExpK

z̄ v are shown as purple
points. These purple points should ideally lie on the shaded surface, which would indicate a good fit.
Indeed, for the approximation by our composite network, this is mostly the case, while for the other
two approaches the approximation does not match the point cloud in many places.

5.6 Parametrization via Composite Networks

The (approximate) parametrization of the SPGA manifoldM[U ] via the affine combination of multi-
linear interpolations of the exponential map on factor manifolds yielded an efficient tool for nonlin-
ear synthesis of deformations in a data-driven model. However, it has the crucial limitation that the
individual subspaces Ul have to be of limited dimensionality (ml ≤ 4) for it to be computationally
feasible. This can become a problem, for example, if we require higher dimensional SPGA manifolds
for humanoid datasets where also the face and hands are articulated. Such models and datasets are
becoming increasingly more popular with one recent example being SMPL-X [PCG+19]. Hence, in
this section, we will turn to neural networks as an alternative method to parametrize such manifolds
constructed from data. However, training a single fully connected network to approximate the ex-
ponential map and thus parametrize the SPGA manifold does not perform satisfactorily as we will
see in Section 5.6.1. Instead, we will use our structural insights from Section 5.3 to create a network
architecture that yields an efficient and accurate parametrization.

Neural Networks. Before we detail this architecture, we first introduce our notation for neural net-
works. We indicate functions that are implemented as neural networks by the superscript ζ as in
ϕζ. This ζ represents the network parameters and is the same for all occurring networks, with the
implicit convention that different networks depend on different subsets of these parameters.

We denote by MLPζρ[N1, . . . , NT ] a fully-connected network with layer sizes N1, . . . , NT , non-
linear activation function ρ : R → R after each layer, and parameters ζ. That means its evalu-
ation MLPζρ[N1, . . . , NT ](z1) = zT is defined recursively through z t+1 := ρ

(
W t+1z t +bt+1

)
for t ∈

{1, . . . ,T −1} with weights W t+1 ∈ RNt+1×Nt and biases bt+1 ∈ RNt+1 —all stored in the parameters
ζ. For graph convolutional networks, we adapt the approach by Kipf and Welling [KW17] to data
z1

e ∈RN0 on edges e ∈ E: The t th layer is given by

z t+1
e = ρ

(
W t+1

1 z t
e +W t+1

2

∑
ẽ∈N (e)

z t
ẽ +bt+1

)
(5.23)

where W t+1
1 ∈RNt+1×Nt and W t+1

2 ∈RNt+1×Nt are small matrices with learnable parameters and bt+1 ∈
RNt+1 is the bias. Note, that in this case the sizes of the layers Nt refers to the data dimension per edge.
We define the neighborhood of an edge in a triangle mesh as N (e) := {ẽ ∈ E | e and ẽ share a vertex}.
We used the Exponential Linear Unit [CUH16] as activation function in all our experiments, i.e.

ρ(x) =
{

x x > 0

(ex −1) x ≤ 0.
(5.24)
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Structural Assumptions. We want to learn an efficient parametrization Φζ : RJ → MJ of a J-
dimen-sional Riemannian data manifold MJ by exploiting a specific product structure. One can
think of the parametrization as the decoder part of an autoencoder. The assumptions below directly
originate from our observations on the structure of SPGA manifolds in Section 5.3. Nevertheless,
we will formulate them in an abstract language as we expect them to also apply in other scenarios,
which we will briefly explain afterwards. However, we will focus on the situation in which Φ should
encode the Riemannian exponential map at some point z̄ ∈MJ . Then, the structure of MJ we want
to exploit has three components:

(1) Correlation. We assume a structural correlation between the different coordinates, e.g. graph-
neighbour relations for triangular meshes or pixel-neighbour relations for image data, so that
convolutional networks can be applied. In our SPGA scenario, we achieve this by using NRIC.

(2) Factorization. We assume that the manifold can be smoothly approximated by a product of
much lower-dimensional manifolds M1,M2, . . . ,ML we will parametrize separately. This way,
we exploit that the necessary network size as well as the required training effort decrease with
smaller manifold dimension: For m-dimensional manifolds the network size should scale at
least linearly in m, while the required training set and thus also training time will scale exponen-
tially in m.

(3) Combination. It is not sufficient that the single factor manifolds are easy to parametrize since
a generic point on M has components in all factors. Thus, we assume that the direct sum of all
factors

M1 ⊕z̄ . . .⊕z̄ MJ := {z̄ + (z1 − z̄)+ . . .+ (zL − z̄) |z1 ∈M1, . . . , zL ∈ML}

for some z ∈M already approximates the actual manifold M with a (possibly large, but) smooth
approximation error. This will ensure that a suitable map from (z1 − z, . . . , z J − z) to M can be
efficiently learned. We have seen that this and the previous condition are reasonable for SPGA
manifolds of articulated shapes in Section 5.3.

Note that while condition (1) essentially has to hold for any approach employing neural networks,
conditions (2) and (3) are specific to our approach. Condition (2) expresses that the intrinsic geom-
etry of the data manifold M has a simplifying structure, while condition (3) is about the extrinsic
geometry of how M is embedded in Rn—only both conditions together characterize a structure that
can efficiently be learned.

The toy shape manifold M of tori from Figure 5.16 has the flat metric of S1×S1×T2—the factors
representing the orientation of the longitudinal and latitudinal ellipsoidal cross-sections as well as
a bump position, see Figure 5.18—and thus satisfies condition (2). Condition (3) holds since each
torus is represented as NRIC: For instance, the creation of the bump (which corresponds to chang-
ing the position in T2) is well described by simply adding fixed numbers in the right places of the
edge length vector l (X ). However, the direct sum is indeed only an approximation. Otherwise, there
would be no error in Figure 5.16 (green), but one clearly sees a remnant of the bump from the refer-
ence shape.

This shows that we can expect these structural assumptions to hold for other data manifolds
beyond those constructed using SPGA. We think that they are plausible in two rough scenarios: The
first is different factor manifolds corresponding to different spatial regions. For instance, images
may sometimes be partitioned into different regions that can vary more or less independently of
each other. Also SPGA manifolds fall into this scenario. The second scenario comprises variations at
different length scales that are independent of each other, for example, geometric texture on small
length scales versus global shape variations at large length scales. The toy shape manifold of tori
from above falls into this category. In our computational experiments in Section 5.6.1, we will focus
on examples of the first kind constructed via SPGA.
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Figure 5.17: Structure of composite network.

Network Representation and Training. Before we discuss the previous conditions, let us describe
how we exploit them in our network architecture and training procedure. To learn the parametriza-
tionΦζ : RJ →M, we decompose it as

Φζ =Ψζ ◦ (ψζ
1, . . . ,ψζ

L),

where ψ
ζ
l : Rml → R2|E| is the parametrization of the ml -dimensional factor manifold Ml and

Ψζ : (R2|E|)L →Rn is the combination of the single factors, behaving approximately like (z̄1, . . . , z̄L) 7→
z̄ + (z1 − z̄)+ . . .+ (zL − z̄), see Figure 5.17.

The maps ψζ
l will be fully connected neural networks. Because they approximate the smooth

exponential map on rather low-dimensional spaces, they are expected to achieve a high approxi-
mation quality that is typically stable under variation of the concrete network architecture (number
and size of layers). For the maps Ψζ, we exploit that they operate on a structured domain, i.e. a
mesh, and thus they will be convolutional neural networks. This allows for efficient training and
storage even though they operate on high-dimensional data. One could alternatively also use fully
connected networks for Ψζ, but the observed quality of the results was similar despite significantly
increased memory requirements to train, store, and evaluate.

These networks are trained separately: To train the mapψζ
l , we consider a basis u j

1 , . . . ,ul
ml

of the

Riemannian logarithm Ul ⊂ Tz̄M of Ml and corresponding parametrization ωl (al ) = ∑ml

i=1 al
i ul

i for

a coefficient vector al = (al
1, . . . , al

ml
). In the case of SPGA manifolds, the basis arises by the grouping

of SPGA modes as in Section 5.3. We then consider a set of random samples Sl ⊂Rml as training data
(for instance normally distributed or uniformly on a ball) and minimize the loss function

Jl (ζ) = 1

|Sl |
∑

al∈Sl

∥ExpK
z̄ (ωl (al ))−ψζ

l (al )∥2
2

using the weighted L2-norm ∥·∥2 from Section 4.3.1. To train the mapΨζ, we subsequently consider
a random training set S ⊂Rm1 × . . .×Rml =RJ and minimize the loss function

J (ζ) = 1

|S|
∑

(a1,...,aL )∈S

∥ExpK
z (ω1(a1)+ . . .+ωL(aL))−Ψζ(ψζ

1(a1), . . . ,ψζ
L(aL)∥2

2,

where we may or may not keep the maps ψζ
l fixed.

5.6.1 Experiments and Applications

In this section, we present experimental results on the aforementioned synthetic shape manifold
of deformed tori and manifolds extracted via SPGA. We will compare our method to approaches
based on Section 5.3.2 and a straightforward approximation of the parametrization by a single fully
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S1

S1

T2

Figure 5.18: Factors of the Freaky Torus. We visualize our synthetic shape space by demonstrating the
effect of moving along the individual factors to the final shape. In the first row, we see how the first
factor, an S1, controls the deformation of the latitudinal cross-section. We show the deformed torus
from the top. In the second row, we see how the next factor, another S1, controls the deformation of the
longitudinal cross-section. Here, we show the torus cut in half to better highlight the cross-section’s
shape. In the last row, we show how the third factor, a two-dimensional flat torus T2, controls the
position of a bump on the deformed torus.

connected network. To quantify the approximation quality of different approaches, we use the coef-
ficient of determination R2. For approximations z̃i of NRIC zi with mean z̄, it is defined as

R2(z, z̃) = 1−
∑

i∥z̃i − zi∥2
2∑

i∥zi − z̄∥2
2

.

From a statistical point of view, it quantifies the proportion of variation of the data that is explainable
by a given model. This means an R2 of one is optimal, the smaller it is the worse is the approximation,
and a negative R2 means that the model is worse than simply using the mean.

Training & Implementation. We used Adam [KB15] as descent method for training all networks,
where the initial learning rate was 10−3 and was reduced by a factor of 10 every time the loss did not
decrease for multiple iterations. For regularization, we used batch normalization after each layer
and a moderate dropout regularization (p = 0.1) after each convolutional layer. We implemented
the neural networks in PyTorch [PGM+19] using the PyTorch Geometric library [FL19]. The tools for
the NRIC manifold were implemented in C++ as in Section 5.4 and we also used the multi-resolution
scheme described there.

Synthetic Data: Freaky Torus. For the Freaky Torus dataset, we construct a synthetic shape space
with factors S1 ×S1 ×T2, where T2 refers to the flat 2-dimensional torus. It is realized in NRIC by (i)
deforming the two cross-sectional circles of a torus to ellipses of fixed aspect ratio and orientation
controlled by the first two S1 factors and (ii) growing a bump in normal direction whose position is
controlled by the last T2 factor. The factors are visualized in Figure 5.18. These torus deformations
are applied to a regular mesh of a regular torus embedded in R3, and the deformed meshes’ NRIC
are extracted to obtain our datapoints. We used a mesh with 2048 vertices and uniformly drew 1000
samples from S1 ×S1 ×T2.

Figure 5.16 shows that a single fully connected network struggles with approximating the high
frequency detail of the bump, while our composite network is able to handle this well. This can also
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be observed in the approximation quality quantified using the R2. The composite network achieves
an R2 of 0.99 and the monolithic network one of 0.95. This difference may sound small, however,
this is because the bump is a detail and the error is dominated by the overall shape of the torus.

Application: SPGA Manifolds. Furthermore, we report the results of applying our method to shape
manifolds whose approximate product structure is found with the help of SPGA. To this end, we re-
peat three of the examples discussed in Section 5.5 and consider one new dataset. The repeated
examples are the humanoid SCAPE dataset, the dataset of face meshes, and the dataset of hand
meshes. For the new example, we examine a humanoid dataset based on SMPL-X [PCG+19], where
we consider their expressive hands and faces (EHF) dataset—containing 100 shapes—and 49 addi-
tional shapes from the SMPL+H dataset, which feature more expressive arm and leg movements,
adding to a total of 149 input shapes.

Based on this data, we compute the sparse tangent modes and factor the resulting data mani-
folds as in Section 5.5. We report the chosen number J of included modes in Table 5.5, where we
used the same number as before for the repeated examples. For the hand and face examples, we
choose the same number of factors L, while for the SCAPE example we decreased the number to
account for the possibility to handle higher-dimensional factors with the network-based approxi-
mation. Our choices are again documented in Table 5.5. Each cluster then spans exactly one of the
factor manifolds and the range of their dimensions is also reported in said table.

Figure 5.19: Examples from the face and hands datasets. We use the same colors as in Figure 5.16.

Data Generation. Next, we sample the exponential map on the space spanned by the SPGA modes
to generate the training (and test) data. To this end, we consider the hypercube in RJ given by the
minimal and maximal coefficients of projections of the input data onto the SPGA subspace. Then
we draw our parametrization coefficient samples S ⊂ RJ uniformly from this hypercube. To create
the samples Sl for the factor manifolds, we simply take the corresponding subcomponents of co-
efficient vectors from S. The corresponding shapes were then computed by evaluating the discrete
exponential map for each of them. Overall, we sampled approximately |S| = 4000 points for each of
the considered examples. The dataset was split randomly into a training (80%) and a test (20%) set,
with the training set being used for the descent method of the loss functionals and the test set being
used to evaluate the performance of the networks.

Figure 5.20: Two examples from the SCAPE dataset. We use the same colors as in Figure 5.16.
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Example J L ml Affine Monolithic Composite
Affine+Grid

(Section 5.3.2)

SMPL+X 80 10 3 – 24 0.78 0.85 0.93 —
SCAPE 40 6 5 – 9 0.77 0.60 0.91 —
Hands 12 4 2 – 4 0.88 0.95 0.98 0.80
Faces 10 6 1 – 4 0.96 0.95 0.99 0.95

Table 5.5: Approximation quality R2 on SPGA examples.

Comparison to Affine Approximation. Recall, we proposed a scheme based on multilinear inter-
polation of precomputed exponentials for each of the factor manifolds and subsequent affine com-
bination of the results to approximate the exponential map and parametrize MJ in Section 5.3.2. A
natural question is how our network-based approach compares to this.

For the humanoid examples, it was not possible to precompute Riemannian exponentials on a
regular grid for all factor manifolds due to their high dimensionality. Hence, instead of multilinearly
interpolating precomputed exponentials, we simply compute the exponentials within each factor
manifold exactly before combining them affinely. We dub this method simply ‘affine combination’
and present its results in Figure 5.20 and Table 5.5; it is computationally heavy, but yields an up-
per bound on the quality of the method from Section 5.3.2. The limitation does not apply to our
network-based approach, which for example allows us to learn an efficient parametrization for the
SMPL+X dataset, where the expressive movements of hand and face require a higher-dimensional
data manifold.

In all examples, our composite network approach achieves higher approximation accuracy than
the ‘affine combination’. This shows that the network Ψζ is able to correct the approximation er-
rors of the direct sum structure. For the lower-dimensional examples, this difference is not as pro-
nounced since their sparse modes have a better support separation.

Furthermore, storing our network-based approximation requires less memory than the grid-
based approach. For example, on the SCAPE dataset storing grids with approx. 20000 samples re-
quires about 1.7 GB of storage, while our networks only require 0.6 GB (without optimizing for a
small memory footprint).

Figure 5.21: Two examples from the SMPL-X dataset. We use the same colors as in Figure 5.16.

Comparison to Monolithic Network. Another obvious question is whether our composite ap-
proach shows any benefit over training a simple, single network. For evaluation, we also trained one
fully connected network Φ̃ζ : RJ →MJ to approximate the parametrization at once, dubbed ‘mono-
lithic’ approach. The corresponding approximation qualities are reported in Table 5.5 under the
heading Monolithic. One sees that for the lower-dimensional examples this monolithic approach
achieves an approximation quality close to the one of our composite network. However, for the
higher-dimensional, humanoid examples the approximation quality of the monolithic approach is
noticeably lower.



78 CHAPTER 5 SPARSE PRINCIPAL GEODESIC ANALYSIS

t = 0 t = 16
8

5
8

4
8

3
8

2
8

1
8

7
8

Ψζ

ψ
ζ
1(a1(1)) ψ

ζ
6(a6(1))ψ

ζ
5(a5(1))ψ

ζ
4(a4(1))ψ

ζ
3(a3(1))ψ

ζ
2(a2(1))

Figure 5.22: For two given shapes with latent coordinates a(0) and a(1), we compute interpolating
NRIC z(t ) using our composite network. In the top row, we see the surfaces reconstructed from these
NRIC for intermediate time steps exhibiting smooth deformations. Below, we also show the elements
ψ
ζ
l (al (1)) from the factor manifolds Ml which lead to the final shape by applying the combination

network Ψζ. These individual factors lead primarily to deformations of the legs for ψ1 and ψ3, of the
arms for ψ4 and ψ5, of the wrists for ψ2, and of the head for ψ6.

Animation. One possible application of our composite network is again the efficient animation of
shapes. As before, we can consider shape interpolation and extrapolation problems, which corre-
spond to the evaluation of the Riemannian logarithm and exponential map. For the case of shape
interpolation, we are given two shapes by their latent coordinates a(0) ∈ RJ and a(1) ∈ RJ respec-
tively. Then, the latent coordinates of intermediate shapes are obtained by linear interpolation, i.e.
we define a(t ) := t a(1)+(1− t )a(0) for t ∈ [0,1]. By evaluating our composite network on these coor-
dinates, we obtain the approximate NRIC z(t ) :=Ψζ(ψζ

1(a1(t )), . . . ,ψζ
J (a J (t )) of these shapes, where

a j (t ) ∈ Rm j are the factorized coordinates as before. This leads to a smooth interpolation between
shapes as demonstrated in Figure 5.22.

Number of Samples. We observed that our composite network can also be trained with smaller
amounts of samples than we used above. For example on the SCAPE dataset, if we only use 20%
of the data as training set (about 800 samples) then we still achieve an R2 of 0.86. Even if we use a
mere 5% (200 samples) we still reach an R2 of 0.77. We observed a similar behavior on the SMPL+X
dataset with an R2 of 0.85 at 20% training data and of 0.74 at 5% training data.

Runtimes. Our network-based approach enables runtime efficient approximation of the exponen-
tial map. For example, on the SCAPE dataset, we used K = 16 time steps to evaluate the time-discrete
exponential map when generating the training samples. The computation for each such evaluation
required around 8 seconds. In contrast, evaluating the networks takes about 10 milliseconds. To
render the result, we have to reconstruct the nodal positions of the triangle mesh from the NRIC, for
which we use the nonlinear least-squares method from Fröhlich and Botsch [FB11] as explained in
Section 4.1. This requires again a small number (e.g. 2 to 3 in Figure 5.22) of Gauß–Newton itera-
tions taking about 20ms each. Overall the performance is comparable to the approach grid-based
approach from before.
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5.7 Conclusion and Outlook

In this chapter, we have introduced a new method to construct submanifolds of the shape space
of discrete shells approximating given data that can be parametrized efficiently. We picked up the
approach from Principal Geodesic Analysis to describe such manifolds using the exponential map
on the tangent space at a mean shape. However, we modified the problem to compute the basis
of the subspace over which the submanifold is parametrized by including a sparsity-inducing regu-
larization. For this to make sense, it was crucial that we used NRIC as primary coordinates for the
shape space. In the experiments, we saw that the sparse modes often can be assigned some seman-
tic meaning such as moving a joint or muscle group on a humanoid model. Furthermore, we saw
that the modes tend to group-wise decouple—i.e. have mostly disjoint support—and we used this
to introduce a product structure on the constructed submanifold. We then proceeded to show two
ways how this structure can be exploited to create an efficient parametrization. First, we considered
a grid-based multilinear interpolation on each factor together with an affine combination—relying
again on NRIC for this. This yielded an efficient and useful approximate parametrization but was
limited in the number of dimensions it could handle due to the needed grids. Hence, we proposed
a neural network-based alternative parametrization second. We built the product structure of the
submanifold into the network architecture and its training to dramatically improve its performance.
This allows us to better approximate the parametrization of the submanifold while still being use-
ful for realtime shape interpolation and editing. Overall, this means we have constructed the first
methods to use Riemannian operators on the space of discrete shells in realtime applications.

In the future, it would be interesting to gain a better theoretical understanding of our decoupling
resp. product structure in the language of Riemannian geometry. To this end, it seems reasonable
to connect it to the de Rham decomposition theorem, which allows to identify product structures
in the tangent space and has, for example, been recently used by Pfau et al. [PHBR20] to do so in a
manifold learning context. An important tool for this would be the time-discrete covariant derivative
from Effland et al. [EHRW22]. This might also allow us to generalize our construction to other shape
spaces.

Identifying product-like structure in data is the principal goal of ‘disentanglement learning’—
an increasingly popular direction of machine learning. An interesting extension of our work in this
direction would be to also construct an encoder network counterpart for our composite network
decoder built on our structural insights. This would allow to generalize the approach to other shape
spaces where no equivalent to SPGA is available. Furthermore, it might even allow us to apply it to
scenarios where we do not have or know an underlying shape space.

To further improve the performance of our method—especially to reduce the effort necessary
for the projection onto the NRIC manifold—it would be worthwhile to devise a method to build
the constraint of mapping to the manifold into the network. Since explicitly integrating this into
architecture seems arduous, an interesting first idea would be to include a penalty or constraint
based on the discrete integrability condition from the previous chapter into the training.

Finally, when passing to an autoencoder setup, we will obtain immersion of data manifold into
relatively low-dimensional Euclidean latent spaces. It would be interesting to obtain implicit rep-
resentations or even parametrizations of these latent manifolds. This would enable formulation
(time-discrete) geodesic operators on these, which could be useful too in many applications. For
example, it could allow finding a joint manifold structure on a space of remeshed discrete surfaces.
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Chapter 6

The Space of Repulsive Shells

Figure 6.1: Intersection-free interpolation between clasping hands. Our proposed method computes
interpolations between surfaces as geodesics on a Riemannian shape space, where the metric guaran-
tees the avoidance of self-intersections. Here, we show the fixed end shapes in gray and the interpolated
shapes in blue from two perspectives.

All the methods for the shape space of discrete shells presented so far have one crucial limita-
tion: They do not guarantee that the resulting shapes are free of self-intersections. The membrane
energy guarantees that all surfaces are immersions by moving discrete surfaces with collapsed trian-
gles infinitely far away due to the logarithmic term in the energy density. However, nothing ensures
that we obtain embeddings, which can lead to implausible results as we have, for example, seen in
Figure 5.14. Our goal in this chapter is to rectify this problem by constructing a modification of the
metric that also moves discrete surfaces with self-intersections infinitely far away. This will allow us
to perform shape interpolation and extrapolation avoiding intersections leading to natural looking
results, e.g., in Figure 6.1.

Previous methods that guarantee intersection-free shape interpolation focused on ambient dif-
feomorphisms to describe deformations. This requires a sufficiently highly resolved discretization
of ambient space, which becomes computationally intractable for initial shapes close to contact as
in Figure 6.1. Instead, we continue to consider triangle meshes. By modifying the metric of the
shape space—instead of, for example, adding penalties to the resulting variational problems—we
can carry over all the tools and applications from the space of discrete shells discussed so far.

To this end, we turn to recent work on preventing self-intersections in geometric variational
problems. Yu et al. [YBSC21] showed that the tangent-point energy provides a suitable regularization
int this context and developed efficient numerical methods for it. The tangent-point energy is a geo-
metric curvature energy originally proposed by Buck and Orloff [BO95] to study knots with geomet-
ric analysis and was later generalized to higher-dimensional manifolds by Banavar et al. [BGMM03].

81



82 CHAPTER 6 THE SPACE OF REPULSIVE SHELLS

It is repulsive, which means that it pushes away points that are close in ambient space but distance
along the surface, i.e. close to intersection. Especially, it is only finite for embedded surfaces and
goes to infinity if a surface approaches self-intersections. By considering the graph of the tangent-
point energy over the space of shells, we can indeed construct a metric that moves discrete surfaces
with self-intersections infinitely far away. Thus, in this chapter, we introduce the space of repulsive
shells.

In Section 6.1, we will introduce the tangent-point energy and an efficient and truly repulsive
discretization. Afterwards, we will present our modified shape space including the variational time-
discretization of geodesic calculus in Section 6.2. Finally, in Section 6.3, we will describe the numer-
ical methods necessary to solve the variational problems originating from this time-discretization
and show results obtained using our approach. Furthermore, in this last section, we will also show
some additional experiments on combining the elastic discrete shells energy with the tangent-point
energy beyond the shape space framework.

Remark. This chapter is the result of joint work with Keenan Crane, Martin Rumpf, and Henrik Schu-
macher to be published in [CSSR23]. Preliminary results appeared in the non-peer-reviewed report
[Sas22]. Notably, Henrik Schumacher primarily developed and implemented the fast multipole ap-
proximation and the adaptive discretization introduced in Section 6.1.

6.1 Tangent-Point Energy

The tangent-point energy—as the name suggests—is a geometric energy that uses the tangent
spaces and points on a manifold to generate a self-avoiding behavior. It originates from the study of
geometric curvature energies. These are self-avoidance energies for lower-dimensional subsets—e.g.
submanifolds—of Euclidean space defined via the geometry of these sets. They originate from geo-
metric knot theory which studies knots and their representation by space curves. In this context, the
purpose of these energies is to provide insights into knots via variational problems, e.g. find mini-
mizers as particularly nice representations of knots, or derive topological information about knots
via energy bounds. For these applications, it is crucial that the used functionals provide an infinite
energy barrier to self-intersection to have control over the knot class. This makes the energies highly
singular, nonlinear, and nonlocal and thus challenging to study.

Interest in such energies for curves resp. knots arose in the 1990’s. One of the first examples
of a geometric curvature energy was the Möbius energy that regularizes a Coulomb-type repulsive
energy by a suitable term based on intrinsic distances to obtain an energy that is finite and repulsive
on smoothly embedded curves. Starting from this, a range of further energies have been introduced,
such as ropelength, the (integral) Menger curvature, and the tangent-point energy, which we will
see in more detail below. More recently, e.g. in [BGMM03], these energies have been generalized to
higher-dimensional subsets such as surfaces.

So far, regularizing and topological effects as well as the connection to knot theory of these en-
ergies have been investigated. Recently, the regularity theory has been extended to the fractional
Sobolev setting [Bla13]. This also led to efficient numerical minimization schemes based on Sobolev
gradient descent, e.g., in [RS21]. These schemes can yield crucial insights into the energy landscape
of the energies, which are currently also a subject of interest, for example, in the form of charac-
terizing critical points. Through the work of Yu, Schumacher, and Crane [YSC21] the tangent-point
energy has recently also made its way to computer graphics. The fact that is not invariant to scaling
or Möbius transformations, that it does not require intrinsic distances on the surfaces, and availabil-
ity of efficient numerical tools for its minimization make it a prime candidate for our efforts. Below,
we will introduce it in more detail and summarize some important results about its regularizing ef-
fects. More details on this and the history and analysis of geometric curvature energies in general
can be found in the recent survey [SM22].
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6.1.1 Definition and Properties

In the following, we will introduce the tangent-point energy and its properties on a submanifold of
arbitrary dimension and not necessarily a surface. To this end, letS ⊂Rd be a closed, n-dimensional,
immersed submanifold of class C 1. For two points p, q ∈S , the tangent-point radius Rtp(p, q) is de-
fined as the radius of the smallest sphere through p and q that is also tangent to S at p. In formulas,
this radius can be expressed as

Rtp(p, q) := |p −q |2
2 |P (p) (p −q)| ,

where P (p) denotes the orthogonal projection onto the normal space of S at p. For example, for
hypersurfaces, this projector is given as the outer product of the normal vector n(p) with itself, i.e.
P (p) = n(p)n(p)T .

How does this radius relate to how well-embedded a surface/manifold is? To answer this, we
consider the reach of a manifold S , which is defined as the largest distance such that all points closer
to S have a unique closest point on S . Note that if S is not embedded, e.g., has self-intersections,
then reach(S) = 0. Physically, the reach of a surface can also thought of as half the thickness of
an object whose boundary is described by it. More generally, the reach is related to the curvature of
the manifold and a large reach entails the absence of small oscillations. Coming back to the tangent-
point radius, Federer [Fed59] showed the following identity between the reach and the tangent-point
radius:

reach(S) = inf
p, q∈S, p ̸=q

Rtp(p, q).

Thus the function Rtp can be used to measure how well-embedded S is. A natural approach to
exploit this for variational problems would be to use the inverse of the reach as a barrier func-
tional against self-intersections, which would correspond to an L∞-norm of the tangent-point ra-
dius. However, the lack of L∞-norm turns (numerically) minimizing this functional into an arduous
task. Instead, we consider the Lp -norm of the tangent-point radius and arrive at

Definition 6.1 (Tangent-Point Energy). Let S ⊂Rd be a closed, n-dimensional, embedded subman-
ifold of class C 1. The tangent-point energy (TPE) for integrability parameter α≥ 1 is defined as

T α[S] :=
∥∥∥∥ 1

2Rtp

∥∥∥∥α
Lα(S×S)

=
∫
S

∫
S

|P (p) (p −q)|α
|p −q|2α dHn(p)dHn(q), (6.1)

where Hn denotes the n-dimensional Hausdorff measure on Rd .

Remark. We could have introduced the tangent-point energy as well as the following results for a
larger class of manifolds than immersed submanifolds of class C 1. However, for this thesis, consid-
ering the entire class is not necessary and thus we omit its technical description.

Properties. Our goal is to use the tangent-point energy to define a metric on the space of surfaces
which guarantees that operators from (time-discrete) geodesic calculus lead to surfaces without self-
intersections. Hence, we will summarize here the central properties of the tangent-point energy that
pave the road towards this goal. The first realization is that the feasible set {T α < ∞} indeed only
consists of embeddings for a sufficiently large integrability parameter α. This is the content of

Theorem 6.2. Let S ⊂ Rd be a closed, n-dimensional, immersed submanifold of class C 1 such that
T α[S] <∞ for some α > 2n. Then S is already an embedded submanifold of class C 1,µ, where µ =
1− 2n

α .

It was conjectured in [BGMM03] and rigorously proven in [SM13, Theorem 1.4]. The regularity
aspect can be further improved to
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Theorem 6.3. Let S ⊂ Rd be a closed, n-dimensional, immersed submanifold of class C 1 such that

T α[S] <∞ for some α> 2n. Then S is an embedded W 2−n
α ,α submanifold.

This was proven in [Bla13, Theorem 1.1]. Here, W m+s,α(Rd ) for m ∈ N, s ∈ (0,1), and α ∈ [1,∞)
denotes the Sobolev-Slobodeckij space defined as

W m+s,α(Rd ) := { f ∈W m,α(Rd ) | ∥ f ∥αm+s,α <∞}

with the Sobolev-Slobodeckij norm

∥ f ∥αm+s,α := ∥ f ∥α
W m,α(Rd )

+ ∑
|θ|=m

∫
Rd

∫
Rd

|Dθ f (x)−Dθ f (y)|α
|x − y |d+sα

dydx,

where θ ∈Nd in the usual multi-index notation. These spaces are a type of fractional Sobolev spaces
originating from generalizing Hölder continuity to Lebesgue spaces. An embedded W m+s,α sub-
manifold is then a submanifold which is locally the graph of a W m+s,α function. A comprehensive
introduction to fractional Sobolev spaces can be found in [NPV12]. The regularity result Theorem 6.3
led to the development of Sobolev preconditioning strategies for the optimization of the tangent-
point energy in [YSC21; YBSC21].

Finally, we also need that the tangent-point energy is indeed a barrier against self-intersections,
meaning that it prevents a converging sequence of embedded manifolds from approaching a non-
embedded surface. This is formalized in

Theorem 6.4. Let S j ⊂ Rd be closed, n-dimensional, embedded submanifolds of class C 1 with
T α[S j ] < C for all j ∈ N, where C > 0 . If the S j converge to a compact set S ⊂ Rd with respect to
the Hausdorff-metric as j →∞, then is S ⊂Rd a closed, n-dimensional, embedded submanifold with
T α[S] <C .

The rigorous version of this theorem along with its proof can be found in [KSM18]. It also in-
cludes statement of lower semicontinuity and compactness for such sequences, which are then used
to prove the existence of minimizers of T α under a bounded-diameter constraint within each iso-
topy class. Hence, we got an even stronger statement that allows us to additionally obtain bounds on
the tangent-point energy of limiting surfaces. All this motivates and justifies to include the tangent-
point energy into the structure of our shape spaces to guarantee avoidance of self-intersections. To
do this, we first study its discretization to obtain a repulsive energy on discrete surfaces.

6.1.2 Discretization

We will now consider an immersed discrete surface S ⊂R3 as defined in Definition 2.19. This means
different to the previous part of this section we will not consider the case of arbitrary submanifolds.
However, generalizing the discretization of general simplicial submanifolds is straight forward. Re-
call, that T denotes the set of triangles and aτ the area of the face τ immersed via the piece-wise affine
immersion X : |Sh |→R3. Then the orthogonal projector P (τ) onto the normal space of τ is given by
P (τ) = NτN T

τ , where Nτ is the normal of the immersed face X (τ) and we denote its barycenter by
X̄ (τ). With this notation in place, we can introduce a first naïve and yet prototypical discretization
of the tangent-point energy via midpoint quadrature:

T α
h [S] := ∑

τ∈T

∑
τ′∈T
τ′ ̸=τ

|P (τ) (X̄ (τ)− X̄ (τ′))|α
|X̄ (τ)− X̄ (τ′)|2α aτaτ′ (6.2)

Whenever we fix the connectivity Sh of the discrete surface, we will write T α
h [X ] for the evaluation

on discrete immersions X of this surface.
The consistency of this discretization has been experimentally verified in [YBSC21]. However, it

has two significant drawbacks:
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(a) The evaluation of T α
h scales quadratically in the number of faces |T| and thus quartically in the

mesh resolution h.

(b) T α
h is not truly repulsive, i.e. even with finite energy discrete surfaces can still intersect away

from triangle barycenters.

These two drawbacks also play against each other, since we have to make h small to get a strong
enough repulsion to prevent intersections but then the evaluation becomes dramatically more ex-
pensive. Hence, in the remainder of this section, we will consider remedies for these shortcomings.
First, we will describe a fast multipole approximation of the energies—and its derivatives—that al-
lows evaluating it much more efficiently. Second, we will introduce a adaptive discretization that
automatically refines triangles close to contact to make the energy truly repulsive.

Fast Multipole Approximation. Typically, many terms of the discretized tangent-point energy (6.2)
contribute only little to the energy since the involved faces are far apart. Hence, the energy domi-
nated by only a small number of triangle pairs and we only need to compute the contribution ac-
curately for those and can approximate it for the others without loosing too much overall accuracy.
This is the principal idea of the fast multipole approximation of the discrete tangent-point energy as
described below.

To construct this approximation, we begin with splitting the mesh hierarchically into clusters
C ⊂P(T), i.e. subsets of faces, where the energy will be only evaluated on pairs of leaf clusters. For
a finite set of clusters C, we introduce a hierarchical ordering ≺ by defining U ′ ≺ U for two cluster
U ′,U ∈ C if U ′ ⊊U and there exist no other cluster U ′′ ∈ C such that U ′ ⊊U ′′ ⊊U . If U ′ ≺U , we call
U the parent cluster of U ′ and U ′ the child cluster of U . We call C a cluster tree of Sh if

1. T ∈ C and it is the only cluster without a parent called the root of the tree,

2. the intersection of two clusters sharing the same parent is empty, and

3. each cluster V ∈ C with children is identical to the union of all its children, i.e. V =⋃
U≺V U .

A cluster of a tree without children is called a leaf cluster and we denote the set of all leaf clusters
by L(C). In our application, we construct a cluster tree for an immersed mesh simply by splitting
bounding boxes along their longest edge. That is for a given cluster, we consider its axis-aligned
bounding box—i.e. the smallest axis-parallel cuboid containing all embedded vertices of the faces
of the cluster—and split it in half along its longest axis. This yields two children containing the
faces whose barycenters are left respectively right of the split. Hence, we obtain a binary cluster
tree, where we continue until each leaf of the tree contains exactly one triangle. This is a rather
simple construction but it proved effective in our experiments and is efficient to generate, which is
important since we have to rebuild it for each evaluation.

We want to speed-up the evaluation of (6.2), hence we next consider pairs of clusters and build
a block cluster tree B ⊂P(T)×P(T). This tree is constructed recursively: Starting from the root (T,T),
an admissibility criterion—detailed below—is checked for the current cluster pair. If it is admissible
it is kept as a leaf node, this means we can well approximate the contribution of this pair using one
term. If it is not admissible, we need a better approximation and all possible pairs of child clusters
of the two original clusters are added to the tree and checked for admissibility and split again if
necessary. To determine the admissibility of a pair of clusters (U ,V ), we check if

max
{
diam(U ),diam(V )

}≤ θdist
(
conv(U ),conv(V )

)
, (6.3)

for some η≥ 0, where diam(U ) denotes the diameter of the smallest sphere containing all embedded
faces of U and conv(U ) their convex hull. This estimate allows controlling the error of the midpoint
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quadrature of (6.1) and is typically called the multipole acceptance criterion (MAC). In practice,
checking the MAC of the clusters U and V is too expensive to be performed repeatedly. Instead,
we check the MAC of their bounding boxes because if they satisfy it then U and V do so as well. The
parameter η allows a trade-off between accuracy and computational cost of the approximation. For
η= 0, the criterion is only fulfilled for empty clusters. Thus the block cluster tree is build to its maxi-
mal depth and approximation below agrees with the original discretization since the leafs consists of
all pairs of triangles. With increasing η the computational cost of the evaluation decreases as well as
the approximation accuracy. In our experiments, already η= 1

4 was sufficient to achieve satisfactory
energy approximations. Finally, we denote by LBCη(S) the leafs of the block cluster tree constructed
with the MAC (6.3).

These leafs form a cover of the discrete surface Sh ×Sh such that all pairs satisfy the MAC or
consist only of single triangles. Thus, we approximate the tangent-point energy by summing over all
leafs, i.e.

T α
h,η[S] := ∑

(U ,V )∈LBCη(S)

|P̄ (U ) (X̄ (U )− X̄ (V ))|α
|X̄ (U )− X̄ (V )|2α aU aV , (6.4)

where aU is the area of the cluster U immersed via the piece-wise affine immersion X , X̄ (U ) its
barycenter, and P̄ (U ) the average of the orthogonal projectors onto the normals of the triangles con-
tained in U . As for T α

h , we also write T α
h,η[X ] whenever the connectivity is fixed. The approximation

T α
h,η is not differentiable with respect to the immersion X since modifying X also modifies the block

cluster tree. Hence, we approximate the derivative also using the multipole method to approximate
DT α

h [S], which means differentiating T α
h,η while keeping the block cluster tree fixed.

Adaptive Discretization. So far, neither the naive discretization of the tangent-point energy nor its
approximation by the fast multipole method prevent self-intersections. To explain how this works,
let us first take a more detailed look at the problem. Consider two non-neighboring triangles τ,τ′ ∈ T
whose immersions intersect but their barycenters do not agree. Then their discrete energy contribu-
tion |X̄ (τ)− X̄ (τ′)|−2α|P (τ) (X̄ (τ)− X̄ (τ′))|α will be finite although possibly large. Even worse, it might
even be zero if the barycenters lie in the plane of the respectively other triangle. The underlying issue
is that we only use one quadrature point to approximate the integral of a (nearly) singular function.
We will approach this problem by extending the block cluster tree beyond pairs of single triangles by
refinement.

In other words, we use an adaptive quadrature that automatically introduces additional quadra-
ture points on triangles close to contact. Formally, whenever a pair of triangles is a leaf of the block
cluster tree and violates the MAC, we subdivide the triangles—using a standard 1-to-4 subdivision—
and extend the block cluster tree using the resulting pairs. We do not actually refine the mesh since
all information is already present and we only need the normal and barycenter of the new (virtual)
triangles. Therefore, everything can be computed implicitly when evaluating the energy and thus
requires only a small amount of memory. We repeat this until all leafs of the block cluster tree fulfill
the MAC. This means that if two triangles intersect the block cluster tree will be extended to infinite
depth. Thus, we have to exclude neighboring triangles from this refinement.

This strategy has the advantage that it is easy to implement given an implementation of the fast
multipole approximation of Th . It has the downside that it becomes computationally very expensive
if many subdivisions are required. To this end, we do not evaluate the MAC on axis-aligned bound-
ing boxes of the triangles—potentially leading to unnecessary subdivisions—and instead compute
exact minimal distances between triangles. This also allows us to set the energy to infinity whenever
two triangles intersect and stop the evaluation. Moreover, we also use a parameter ηnear > η in the
evaluation of the MAC for the refinement since a very accurate evaluation of the energy per (virtual)
triangle is not necessary as long as the number of quadrature points increases when two triangles
approach each other. In practice, we chose ηnear = 10. Overall, we have constructed a discretization



6.2 SHAPE SPACE AUGMENTATION 87

that is efficient to evaluate for most meshes—by virtue of the fast multipole approximation—and
truly repulsive in that it approaches infinity if the mesh approaches self-intersection—due to the
adaptive refinement. With this at hand, we return to the shape framework next and discuss how to
integrate the (discretized) tangent-point energy into it.

6.2 Shape Space Augmentation

Our goal is to introduce a Riemannian shape space, whose metric combines the discrete shell metric
with the tangent-point energy. For shapes far from self intersection, it should resemble the space of
viscous shells with a metric measuring viscous dissipation due to infinitesimal membrane distortion
and bending. When approaching self contact, a component of the metric reflecting the infinitesimal
increase of the tangent-point energy should become increasingly important. This concept would
allow us to use the rich set of tools from Riemannian geometry, while guaranteeing self-intersection
free shapes. For example, geodesics on this new space would lead to an intersection-free interpola-
tion between shapes.

A key requirement is to incorporate the avoidance of self contact directly into the metric. In
fact, following instead the naïve idea to simply add the penalty T α

h to the path energy in (3.7) one
faces undesirable behavior: For start and end shapes that are in somewhat close contact, one would
be perfectly happy with a trajectory that maintains a similar level of “closeness” throughout and
thereby only moderate modulations of the actual geometry. Instead, the tangent-point energy as a
penalty would try to push the intermediate shapes far away from itself at the expense of large surface
deformations (Figure 6.2).

Figure 6.2: Using the time-integrated
tangent-point energy for interpolation
leads to unwanted deformations along
the trajectory.

A first attempt for a Riemannian metric taking into
account the preference for non self contact would be to
choose the Hessian of the sum W[X , ·]+T α

h [·]. However,
T α

h is not convex and therefore this Hessian is not nec-
essarily positive-definite. Hence, it is not admissible as
a metric and in particular does not provide a meaningful
notion of length and path energy for interpolating trajec-
tories c : [0,1] →M in shape space.

Our below approach avoids these shortcomings. In
the following, we will formulate it for a general potential
energy V : M → R≥0 ∪ {∞}, for which the tangent-point
energy will be the motivating example. In general, we as-
sume that V is continuous, especially limx→y V[x] =∞ if
V[y] =∞. Then, we consider the feasible set

M+ := {x ∈M |V[x] <∞} . (6.5)

We assume that M+ is an open submanifold of M and that the potential energy is continuously
differentiable on M+. In case of the continuous tangent-point energy, M+ would be the space of
embeddings and thus indeed an open submanifold of the space of immersions. The same approach
we detail here could be applied to continuous and discrete shells alike.

Now, we want to modify the metric onM+ such that it includes a barrier at the boundary ofM+.
To this end, we consider the graph of the potential energy V over M+. That is, we define

MV := {(x,V[x]) | x ∈M+} ⊂M+×R≥0. (6.6)

We can pictureMV as a mountain range over the underlying shape space, where the height of moun-
tains corresponds to the amount of potential energy a given shape carries. However, let us empha-
size that the base manifold M is already nonlinear.
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We can parametrize MV using Φ : M+ →M+×R≥0, Φ(x) = (x,V[x]). Since V is continuously
differentiable, the parametrization Φ is also differentiable and has an injective differential given at
x ∈M+ by

DxΦu = (u,DxV u) for u ∈ TxM+.

In particular,Φ is a diffeomorphism of M+ onto MV—showing that MV is indeed a manifold—and
we see that the tangent space of the graph manifold at (x,V[x]) is given by

T(x,V[x])MV = DxΦ (TxM) = {(u,DxV u) | u ∈ TxM} . (6.7)

Thus, the dimension of MV equals the dimension of M.
Next, we introduce a metric on MV to turn it into a Riemannian manifold. Let g be the metric

on M, in our case the viscous shell metric from Section 3.3. Then, the product metric g̃ on MV

induced viaΦ is given by

g̃(x,r )
(
(u, s), (v, t )

)
:= gx (u, v)+β2 s t ,

for (x,r ) ∈MV and (u, s), (v, t ) ∈ T(x,r )MV , whereβ> 0 is a weighting parameter for the contribution
of the potential energy.

Our goal was to introduce a modified metric on M. Hence, we now pull g̃ back along the
parametrizationΦ to obtain a new metric on the original shape space M:

gV
x (u, v) := g̃Φ(x)

(
DxΦu,DxΦv

)
= gx (u, v)+β2 (DxV u) (DxV v).

(6.8)

In our case, this metric combines the existing metric based on viscous dissipation with the differen-
tial of the tangent-point energy.

Does this space achieve our goal? To answer this, we first observe the following

Lemma 6.5. Let x, y ∈M+ be two feasible points. As before, denote by distg̃ the Riemannian distance
with respect to a metric g̃ . Then

1. distgV (x, y) ≥ distg (x, y),

2. distgV (x, y) ≥β |V[y]−V[x]|, and

3. let y → z ∈M with V[z] =∞, then dist(x, y) →∞.

Proof. Denote by C the set of continuously differentiable curves c : [0,1] →M+ satisfying c(0) = x
and c(1) = y . We use the definition of the Riemannian distance and see

distgV (x, y) := inf
c∈C

∫ 1

0

√
g (ċ(t ), ċ(t ))+β2 (Dc(t )V ċ(t ))2dt

≥ inf
c∈C

∫ 1

0

√
g (ċ(t ), ċ(t ))dt = distg (x, y),

and similarly

distgV (x, y) ≥ inf
c∈C

∫ 1

0

√
β2 (Dc(t )V ċ(t ))2dt

= inf
c∈C

∫ 1

0
β |Dc(t )V ċ(t )|dt ≥β |V[y]−V[x]|.

From the last estimate, it immediately follows that lim
y→z

distgV (x, y) =∞ if V[z] =∞.
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The last point, saying that points with infinite potential energy are pushed to infinite Rieman-
nian distance implies that any geodesic in (M+, gV ) will only consist of points with finite potential
energy. In our applications, this means consisting of shapes without self-intersection. Furthermore,
we can extend distgV continuously from M+ to M by setting it to be infinite whenever one of the
arguments does not lie in M+. When we will talk about the time-discretization of geodesic calculus
on the augmented space and numerical methods for it, we will only require this distance and thus
consider M for notational convenience. Overall, we arrive at

Definition 6.6 (The space of repulsive shells). Let (M, gW) be the space of discrete shells and let T α
h

be the discretized tangent-point energy with feasible manifold M+. Then we call (M+, gV ), where
gV

x (u, v) = gW
x (u, v) +β2(DxT α

h u) (DxT α
h v), the space of repulsive (discrete) shells with repulsion

weighting parameter β> 0.

The idea to modify the metric as in our approach has also been studied, for example, by Gordon
in 1973, who proved the following

Theorem 6.7 ([Gor73]). Let (M, g ) be a connected, finite-dimensional Riemannian manifold of class
C 3 and let V : M→ R be a proper function on M of class C 3. Then M is complete with respect ot the
metric gV

x (u, v) = gx (u, v)+ (DxV u) (DxV v).

Remark. A continuous function f is called proper if f −1(K ) is compact whenever K is compact.

However, this result does not directly apply to our situation. First of, its proof is only valid in
finite dimensions since it relies on the Hopf–Rinow theorem. This means we could only apply it
to the spatially discrete case. There we rely on an adaptive refinement (cf. Section 6.1) to achieve
a truly repulsive energy—i.e. to actually achieve that the feasible manifold M+ only consists of
embeddings—which is not C 3. Hence, to apply this theorem, we would have to construct a suffi-
ciently smooth approximation. For a related model in two dimensions, this has been investigated in
[HL22] and we leave it for our model as potential future work.

Moving towards the time-discretization, recall that we have seen that geodesics can be defined
variationally as minimizers of the path energy. For a path c : [0,1] →M, the path energy with respect
to the augmented metric gV is given by

E[c] :=
∫ 1

0
gV

c(t )(ċ(t ), ċ(t ))dt

=
∫ 1

0
gc(t )(ċ(t ), ċ(t ))+β2(Dc(t )V ċ(t ))2dt . (6.9)

For the curve length L[c] := ∫ 1
0

√
gV

c(t )(ċ(t ), ċ(t ))dt , we again obtain by the Cauchy–Schwarz in-

equality L[c] ≤ p
E[c] and equality holds if and only if the speed along the curve is constant, i.e. if

gV
c(t )(ċ(t ), ċ(t )) ≡ L[c]2. Thus, as before, minimizers of the path energy are indeed constant speed

and length minimizing geodesics. With the path energy at hand, we can use all the tools introduced
in Chapter 3 on our adapted shape space yielding shapes free of self-intersection.

6.2.1 Time-Discretization

By discretizing this path energy, we can define discrete geodesic interpolation and extrapolation fol-
lowing Section 3.2. To compute geodesics numerically, we first define for a discrete path (x0, . . . , xK ) ∈
MK+1 the discrete path energy

E K [x0, . . . , xK ] := K
K∑

k=1
W[xk−1, xk ]+β2|V[xk−1]−V[xk ]|2, (6.10)
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where the first component of every summand reflects the discrete viscous shell energy and the sec-
ond component discretizes the time-continuous second component of the energy in (6.9). This sec-
ond component can also be seen as a finite difference approximation and provides a lower bound
for the change of potential energy along the continuous path. Discrete geodesics are then defined
as minimizers of this energy.

Consistency of the discrete and the continuous path energy follows from the general theory of
time-discrete geodesic calculus developed by Rumpf and Wirth [RW15] and presented here in Sec-
tion 3.2. In that respect, we note the following essential identity (cf. [RW15, Lemma 4.7]):

1
2∂

2
22

(
W[x, y]+β2 (

V[x]−V[y]
)2

)
|y=x (u, v)

= 1
2 ∂

2
22W[x, y]

∣∣
y=x (u, v)+β2

(
(V[x]−V[y])D2

yV (u, v)+ (D yV u)(D yV v)
)∣∣∣

y=x

= gW
x (u, v)+β2(DxV u)(DxV v) = gV

x (u, v).

In fact, together with the smoothness of W and V , this identity implies the Γ-convergence of the
discrete path energy (6.10) (extended to time continuous paths) to the continuous path energy (6.9)
(cf. [RW15, Theorem 4.9]). This, in turn, implies the convergence of discrete geodesics to their con-
tinuous counterparts for K →∞ (cf. [RW15, Theorem 4.10]). In our application, this typically means
that already coarse discrete geodesics, i.e. with a small number of time steps, are predictive of finer
ones.

To perform extrapolation on our augmented shape space, we use the discrete counterpart of the
time continuous exponential map and proceed iteratively as follows. At an initial point x0 ∈M ⊆
R3|V|, we consider some initial velocity v ∈R3|V| and define x1 = x0+ 1

K v . Next, given xk−1 and xk , we
consider the discrete path energy

E 2[xk−1, xk , xk+1] = 2
(
W[xk−1, xk ]+W[xk , xk+1]+β2 (V[xk ]−V[xk−1])2 +β2 (V[xk ]−V[xk+1])2

)
for K = 2 steps. We search for xk+1 such that corresponding Euler–Lagrange equation, i.e. the neces-
sary condition for xk to be a minimizer of this energy for fixed xk−1 and xk+1, is fulfilled. It is given
by

0
!= ∂2W[xk−1, xk ]+∂1W[xk , xk+1]−2β2(V[xk−1]−2V[xk ]+V[xk+1])DxkV =: Fk [xk+1]. (6.11)

In fact, this is the kth equation of the set of Euler–Lagrange equations characterizing a discrete
geodesic (x0, . . . , xk−1, xk , xk+1, . . . , xK ) as a minimizer of the discrete path energy (6.10). Thus, given
x0 and x1, we consecutively solve these equations for k = 1, . . . ,K −1. Thereby, in the kth step, we
extend the already computed discrete geodesic (x0, . . . , xk−1, xk ) by the next extrapolated point xk+1.
Finally, we define the discrete exponential map as before as ExpK

x0
v := xK . Following [RW15, The-

orem 5.9], this discrete exponential map converges to the continuous one. In the kth step of this
discrete geodesic extrapolation scheme, we have to compute the root of the function Fk . To com-
pute these roots, we need the Jacobian

DFk [xk+1] = ∂2
21W[xk , xk+1]−2β2DxkV ⊗Dxk+1V

which is a rank-one update of the derivative of the corresponding Euler–Lagrange operator on the
viscous shape space. By construction, a discrete geodesic extrapolated this way solves the full sys-
tem of Euler–Lagrange equations for a minimizer of the discrete path energy. Thus, if variationally
defined discrete geodesics are unique then they coincide with extrapolated discrete geodesics start-
ing from the first two points x0 and x1 with v = 1

K (x1 − x0). The inverse of the discrete exponential
map is the discrete logarithm defined as LogK

x0
(xK ) := K (x1 − x0), where (x0, x1, . . . , xK ) is the unique

minimizer of the discrete path energy for fixed x0 and xK .
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Figure 6.3: Methods based on ambient diffeomorphisms (here [EC20]) struggle with initial shapes that
are close due to insufficient spatial resolution.

6.3 Implementation and Experiments

With the time-discrete model for the space of repulsive shells at hand, we now turn to the numeri-
cal optimization of the resulting variational problems. Furthermore, we will apply the approach to
various inter- and extrapolation task. We will also investigate some other potential applications of
the combination of elastic and repulsive energies in the variational computation of deformations
beyond the shape space framework.

6.3.1 Numerical Optimization

Computing interpolating geodesics and evaluating the exponential maps leads to challenging nu-
merical problems. So far, we have explained how to handle the non-locality of the tangent-point en-
ergy to evaluate it and its derivatives efficiently. Below, we will explain our algorithmic approaches
to solving the nonlinear optimization problems. Since we focus on discrete shells in the remainder
of the chapter, we will use discrete immersions X ∈R3|V| as variables in the optimization. This means
we consider discrete paths X = (X0, . . . , XK ) ∈R3(K−1)|V|.

Geodesics. To compute discrete geodesics, we use a trust-region method to minimize the discrete
path energy (6.10). In such a method, we build a quadratic model of the objective function at the
current iterate and then minimize this model in a region of limited size around this iterate, the trust-
region. We use the Hessian of the discrete elastic path energy for the quadratic model combined
with a Gauß–Newton approximation of the potential energy part, which can be seen as a non-linear
least squares term. Concretely, this means we solve in each iteration i ∈ {1, . . . , imax} the trust-region
subproblem

min
p∈R3(K−1)|V|

E K [Xi ]+DE K [Xi ]T p + 1
2 pT B i p s.t. ∥p∥ ≤∆i , (6.12)

to obtain the new iterate Xi+1 ∈ R3(K−1)|V| from the previous Xi ∈ R3(K−1)|V|, where we refer to the
elements of the discrete path in vectorized form. The quadratic form B i ∈R3(K−1)|V|×3(K−1)|V| is given
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Figure 6.4: Inversion of cut-open sphere. Top: Geodesic on space of discrete shells (green to purple).
Bottom: Geodesic on space of repulsive discrete shells (blue to red). The fixed boundary of the surface
is shown as a yellow curve.

by B i = D2E K
W [Xi ]+DE K

V [Xi ]T DE K
V [Xi ], where

E K
W [X0, . . . , XK ] := K

K∑
k=1

W[Xk−1, Xk ], and

E K
V [X0, . . . , XK ] := K

K∑
k=1

β2|V[Xk−1]−V[Xk ]|2.

For the adaption of the trust-region size, we follow the approach described in [NW06, Alg. 4.1], which
amounts to increasing or shrinking the trust-region based on the difference between the decrease
predicted by the quadratic model and the actual decrease of energy.

To solve the quadratic—potentially indefinite—trust-region problem, we use Steihaug’s Conju-
gate Gradient (CG) method [Ste83]. It is an iterative method to find (approximate) solutions, ex-
tending the conventional CG method to handle indefinite problems with constraints on the norm
of the solution. The iterative nature fits well for our problem as we can avoid assembling the dense
matrices of the Gauß–Newton approximation, i.e. we only need to compute multiplications with B i .

To make this efficient, we need to apply a preconditioner as is usual for CG methods. In the con-
text of trust-region methods, this corresponds to considering a different metric for the subproblem,
i.e. for our problem we consider

min
p∈R3(K−1)|V|

E K [Xi ]+DE K [Xi ]T p + 1
2 pT B i p s.t. ∥p∥P i ≤∆i , (6.13)

with ∥p∥A := pT Ap. In the algorithm, this boils down to one multiplication with the inverse of
the preconditioner P i per iteration similar to the elementary CG method. We use the L2-in-
time elastic metric for this, i.e., the block-diagonal matrix P i ∈ R3(K−1)|V|×3(K−1)|V| with blocks
P i

k = ∂2
22W[X i

k , X i
k ] ∈ R3|V|×3|V| for k = 1, . . . ,K − 1 on the main diagonal. Its inverse regularizes

the discrete elastic path energy, which typically dominates the overall energy. While it is not the
ideal preconditioner for the elastic part—which would be H 1-in-time—it is easier to assemble and
cheaper to invert as we can easily exploit its block diagonal structure.

Exponential Map. As explained above, we have to recursively solve (6.11), i.e., find roots of a non-
linear function Fk : R3|V| →R3|V|, to compute the discrete exponential map. For this, we use Newton’s
method with line search using the Armijo acceptance condition. This means we have to invert the
derivative DFk [X ] in each iteration. As noted before, DFk [X ] is the rank-one update of a mixed
Hessian of our elastic energy. Hence, we can apply the Sherman–Morrison formula [SM50] and see
that

DFk [X ]−1 = ∂2
21W[Xk , X ]−1 − ∂2

21W[Xk , X ]−1(DXkV) (DXV)T ∂2
21W[Xk , X ]−1

(DXV)T ∂2
21W[Xk , X ]−1 (DXkV)

.

This allows us to efficiently compute the update directions in Newton’s method.
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Figure 6.5: Turning clothes inside out. Geodesic interpolation between meshes of various clothes in
original and flipped configuration (far left and right, respectively).

Multi-Resolution Scheme. We use the same multi-resolution approach as in Section 5.4 to speed-
up computations while retaining the possibility to produce high-quality deformations. To this end,
it is essential that we use the adaptive discretization of the tangent-point energy introduced in Sec-
tion 6.1 to guarantee the prevention of self-intersections. The prolongation might introduce small
intersections to the fine result if the coarse result is close to itself. Hence, if these are undesirable
one has to apply some extra care, although we found that it does not affect the qualitative appear-
ance of deformations in our experiments. We did not perform any further optimization after the
prolongation.

6.3.2 Shape Space Results

In what follows, we show a variety of examples and applications for the interpolation and extrapo-
lation on the Riemannian manifold of repulsive shells. The aim is to demonstrate central properties
of our approach and illuminate how it might be useful for applications. Geodesic interpolation and
extrapolation via the exponential map are fundamental tools on Riemannian shape spaces and can
be used for various tasks in computer graphics. As we have seen in Chapter 3, one can derive more
tools such as parallel transport for detail transfer [HRS+14], computation of Riemannian center of
mass or nonlinear statistics of shapes based on these two. The presented approach allows to use all
these tools while guaranteeing surfaces without self-intersection. As a proof of concept, here, we
will demonstrate the application to shape interpolation and extrapolation.

Interpolation. Already Figure 6.1 shows that geodesics on the space of repulsive shells lead to
intersection-free interpolation of shells. Furthermore, the path energy (6.9) propagates maintain-
ing a constant level of tangent-point energy along the geodesic if both end shapes are on a similar
level. In practice, this leads to interpolations that remain close to contact along the entire trajectory
as is also visible in Figure 1.3. In this figure, we also see that an geodesic interpolation only using the
viscous metric would lead to clear self-intersections along the trajectory.

Previous methods to ensure intersection-free interpolation typically rely on the discretization of
ambient diffeomorphisms. This is a natural approach since self-intersection of surfaces is avoided if
these surfaces are physical interfaces between bulk phases and the deformation of this bulk material
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Figure 6.6: Interpolation of translated sphere with obstacle. In the computations, there is a wall
around the tunnel preventing the sphere from going around it, which is not shown in the rendering to
better expose the deformation of the sphere.

Figure 6.7: A camel “walks” through the eye of a needle (cf. Matthew 19:23–24). Similar to Figure 6.6,
there is a wall around the tunnel in the computations.

either behaves elastic with a a strong penalty on compression, or is controlled by a diffeomorphic
flow. However, to work properly for shapes that are already in close contact a sufficiently refined
discretization of ambient maps is indispensable, which is often times computationally infeasible.
For example, we show a result using the method from [EC20]—which uses a low-rank approximation
of ambient maps using a basis derived from the Laplace basis—at the highest resolution possible on
a modern GPU with 40GB RAM compared to our solution in Figure 6.3.

One can also phrase shape inversion as an interpolation problem. Given a surface, one creates
the end shape for a geodesic interpolation by flipping the sign of all dihedral angles and constructing
the corresponding embedding using the method described in Chapter 4. As before, geodesic inter-
polation without the repulsive term in the path energy would typically lead to self-intersections.
This is also the case for many other methods for this problem, e.g. [CKPS18], which only guarantee
immersions. In contrast, a geodesic on our augmented shape space leads to a shape inversion free
of intersections. We demonstrate this for the example of a cut-open sphere in Figure 6.4 and for a
set of clothes turning inside out in Figure 6.5.

Kinetic Interpolation. So far, we have considered interpolations of static shapes, i.e. where we
assume that there are no rigid body motions. In fact, because our path energy is invariant to rigid
body motions, this was also a necessity to obtain a well-posed problem. We can add further terms
to our path energy penalizing translations and rotations to allow for kinetic interpolations. For this
purpose, we add to the discrete model

Etrans[X0, . . . , XK ] = K
K∑

k=1
∥X̄k − X̄k−1∥2, (6.14)

which penalizes movement of the barycenters X̄ and

Erot[X0, . . . , XK ] = K
K∑

i=1

∥∥∥∥∑
v∈V

(Xk (v)−Xk−1(v))×Xk−1(v)

∥∥∥∥2

, (6.15)
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Figure 6.8: Extrapolation on the space of repulsive shells. The tangent-point component of the metric
leads to an evading behavior.

which penalizes the angular momentum of the deformations of consecutive shapes. Recall that
Xk (v) ∈R3 is the position of the vertex v for the immersion Xk ∈R3|V|.

With this, we can consider the interpolation of objects in motion. For example, in Figure 6.6,
we interpolate between two translated spheres, one left and one right of a barrier with a hole in
it. The barrier is incorporated into the energy via a tangent-point barrier energy (cf. [YBSC21]) as
another potential following the approach described in Section 6.2. This leads to an interpolation of
the sphere avoiding contact with the barrier and with itself. A similar setup makes a camel “walk”
through the eye of a needle in Figure 6.7.

Extrapolation. Now, let us consider shape extrapolation as the second core application. Using the
exponential map on the space of repulsive shells leads to self-contact avoiding behavior as seen in
Figure 6.8. Note that the shape maintains a certain distance to itself, which stems from the fact that
we use an energy modeling repulsion instead of contact. As before, the extrapolation with the expo-
nential map coincides with the corresponding geodesic interpolation, cf. Figure 6.9 and Figure 6.1.
Incorporating the tangent-point energy into the metric not only leads to the prevention of deforma-
tions that would lead to collisions, but also modifies the qualitative character of some extrapolations.
For example, in Figure 6.10, it keeps the two cylinders close such that they twist around each other.

6.3.3 Elastic Deformations

The combination of elastic and tangent-point energy is also useful for applications beyond the shape
space framework discussed so far. It models deformations of a shell repelling itself, which especially
means that it avoids intersection, i.e. a guarantee to compute an embedding. In the following, we
will consider the variational problem

min
X

W[X̃ , X ]+βT α
h,η[X ], (6.16)

where X̃ ∈ R3|V| is some given reference configuration, β > 0 a weight for the tangent-point energy,
and we will add further terms based on the specific application.

Isometric Embeddings. One interesting application is the computation of an embedding for a
given first fundamental form. The existence of such an embedding for an arbitrary metric is a fa-
mous question in mathematics. The Nash-Kuiper theorem [Nas54; Kui55] answers it to the affir-
mative in the class of C 1-regular embeddings. However, for higher regularity, the questions is still
largely open. In fact, computing such embeddings is interesting for applications in natural sciences,
engineering, and design. For example, low bending embeddings of a given hyperbolic metric might
explain growth patterns of “frilly” plants in nature, see for example [YSS+21].

For a triangle mesh, as discussed in Section 2.2.1, the first fundamental form is piecewise con-
stant and determined by the mesh’s edge lengths. Hence, we aim to compute an embedding of a
triangle mesh with given edge lengths and minimal bending, i.e. minimal dihedral angles. We will
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Figure 6.9: Extrapolation of clasping hands. We show in gray the initial two shapes for the extrapola-
tion derived from the example in Figure 6.1 and the result after K = 18 steps in blue.

Front Front

Elastic

Figure 6.10: Twisting two cylinders via extrapolation. The tangent-point component of the metric
prevents that the two cylinders pass through each other and gain increasing distance. This would be
the case for extrapolation using only the viscous metric, which is shown in green in the inset figure.

relax the problem and include the prescription of edge lengths via the membrane energy with a high
weight, which serves as a penalty term. However, the elastic energy of course only guarantees im-
mersions and we are interested in embeddings. To this end, we use the tangent-point energy to
ensure that we do compute embeddings. Furthermore, the tangent-point energy can also be viewed
as a term regularizing the global curvature of the shape. We show the results of this approach for the
aforementioned problem of computing an embedding of a part of the hyperbolic disk in Figure 6.11.

Fixing Intersections. So far, we applied our method to scenarios where we assumed the input data
to be free of self-intersections. Yet, in many geometry processing task one wants to also work with
data that does contain self-intersections. To this end, Yu et al. [YBSC21] observed that considering
the tangent-point energy in the sub-repulsive regime, i.e. for an exponent α < 4, still discourages
overlap even though it does not have an infinite energy barrier to self-intersections. Thus decreasing
it by taking a few descent steps could be used to remove unwanted self-intersections. However,
only considering the sub-repulsive tangent-point energy leads to unwanted deformations all over
the shape, cf. Figure 6.12 (middle). Hence, we instead consider the combination of elastic energy
with sub-repulsive tangent-point energy as in (6.16), which improves the preservation of the overall
shape, cf. Figure 6.12 (right).

Packing. Another application we consider is packing objects into tight spaces. To this end, we
will add a barrier term to (6.16) that forces the surface to stay inside a given geometry. For exam-
ple, we consider the barrier term Ebox[X ] := ∑

v∈V
∑3

d=1(ld − X (v)d )−2 + (X (v)d −ud )−2 representing
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Figure 6.11: Embedding of hyperbolic surface. Almost isometrically immersing a hyperbolic disk of
radius 0.9 using only the elastic energy (green) quickly leads to self-intersections. Adding the tangent-
point energy (blue, middle) leads to an embedding, i.e. avoids self-intersections, and allows to also
consider larger radii such as 0.93 (blue, right).

Figure 6.12: Fixing intersections in a given mesh (gray, intersections in red) by decreasing the sub-
repulsive tangent-point energy using a trust-region method (green) leads to undesirable deformations
of the shape. In contrast, decreasing the combination elastic and sub-repulsive tangent-point energy
(blue) allows preserving the overall shape while removing the self-intersection.

a rectangular box, where l ∈ R3 are the coordinate-wise lower bounds of the box and u ∈ R3 the cor-
responding upper bounds. Then, in Figure 6.13, we reduce the size of the box step-by-step and thus
get a tight packing of the shape into successively smaller boxes. Similarly, we consider a barrier term
Eball[X ] :=∑

v∈V(r 2−∥X (v)∥2)−2 for a sphere with given radius r ∈R≥0 and show a result for reducing
this radius in Figure 6.15.

The resulting deformed shapes exhibit a space-filling quality in that they seem to fill the small
cube evenly. This again highlights the repulsive nature of the tangent-point energy as it not only
prevents self-contact but aims to maintain a distance of the surface to itself which is as large and
even as possible. Combined with the other terms this leads to deformations that fill the box and keep
as much of the original shape as possible. In contrast, methods that only consider contact to prevent
self-intersections, such as [FLJK21], will stop the movement as soon as it reaches the boundary and
thus do not have such as space-filling quality. Note that their approach also uses volumetric instead
of shell elasticity.

6.4 Conclusion and Outlook

In this chapter, we have developed an approach to modify the metric on the space of discrete shells
to push surfaces with self-intersections infinitely far away. This led to the space of repulsive shells.
The key ingredient for this was the tangent-point energy, a nonlocal repulsive energy originating
from the variational investigation of knots. This also entailed that the optimization problems stem-
ming from the variational time-discretization of geodesic calculus on the space of repulsive shells
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Figure 6.13: Tightly packing an octopus into a shrinking box. By adding a barrier term to (6.16), we
can constrain shapes to smaller and smaller boxes.

involve nonlocal terms. To this end, we discussed, on the one hand, an efficient and adaptive dis-
cretization of the tangent-point energy and, on the other hand, introduced an affective approach
to the numerical minimization based on a trust-region method. Through a variety of numerical ex-
periments, we demonstrated that this leads to a useful tool for shape inter- and extrapolation that
guarantees avoidance of self-intersections. This is—to the best of our knowledge—the first method
for intersection-free shape interpolation that does not require the discretization of ambient space.
Furthermore, we also shared a few examples that highlighted the usefulness of the combination of
the tangent-point and the elastic energy beyond the shape space framework, which was also con-
sidered by Bartels, Meyer, and Palus [BMP22].

While the present discretization of the tangent-point energy is often quite efficient and reliably
prevents self-intersections, it can become computationally expensive for surfaces where large parts
are close to contact, for example, as in Figure 6.13. To circumvent this, it would be interesting to find
a closed formula for the tangent-point energy of two triangles that are not in contact. Furthermore, it
might be an option to use the closest points of the triangle pair as quadrature points to obtain a lower
bound. From a general point-of-view, it would be great to enable the remeshing of individual steps in
the computation of geodesics. Interesting deformations generated by minimizing the tangent-point
energy (e.g. in [YBSC21, Figure 14]) incur severe membrane distortions that would lead to degenerate
meshes without a proper remeshing approach. However, for the computation of geodesics, we need
correspondences between these meshes, which are difficult to obtain. This touches on the general
problem of constructing shape spaces that include immersions of different triangle meshes.

We would also like to construct a bending energy based on the tangent-point energy. To under-
stand this, recall that the tangent-point energy is obtained by integrating the inverse tangent-point
radii. For curves, the curvature functional is given by integrating the inverse radii of osculating cir-
cles and a bending energy is obtained by comparing them for different immersions—loosely speak-
ing. We could proceed similarly with the tangent-point radii to obtain a nonlocal bending energy.
However, for surfaces this likely becomes more involved since here second fundamental forms are
compared in bending energies. Nevertheless, such a nonlocal bending energy would be interesting
as it could further facilitate natural looking interpolation. In our current setup, shapes could move
further apart in some points to become closer in others because we only compare the tangent-point
energy after integration. A tangent-point bending energy would not allow this.

It would be interesting to combine other elastic models—e.g. of elastic curves—with the tangent-
point energy. Finally, another important next step would be to generalize the model reduction ap-
proach from the previous chapter to the space of repulsive shells. Especially in the case of composite
networks this could allow to efficiently parametrize submanifold of embeddings constructed from
data.
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Ours [FLJK21]

Figure 6.14: Comparison with [FLJK21]. Using a repulsive energy to avoid self-intersections yields a
space-filling quality (left) that is not present for methods based on contact mechanics (right).

Figure 6.15: Two stanford bunnies packed into a sphere. The barrier approach to packing objects into
tight spaces also works for multiple shapes at once and different packing geometries.
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Part II

Shape Optimization





Chapter 7

Stochastic Bilevel Shape
Optimization

We begin this second part of the thesis with studying a pessimistic stochastic bilevel optimization
problem applied in elastic shape optimization. In essence, these are optimization problems of two
(multi-dimensional) variables where one variable is constrained to be the minimizer of a second op-
timization problem parametrized by the other variable. Figuratively speaking, bilevel programs arise
from the interplay of two decision makers on different levels of a hierarchy: The leader decides first
and passes the upper level decision to the follower. Incorporating the leader’s decision as a param-
eter, the follower then returns an optimal solution of the lower level problem. Bilevel optimization
was originally introduced to analyze problems in economy-driven decision making and this remains
the primary area of its application. However, in recent years, it has been applied to an increasingly
diverse set of problems from other areas.

One such area is elastic shape optimization. So far, applications in this area have considered
the physical deformation problem as the follower’s problem. Here, we propose a new way to apply
bilevel optimization in this setting. Different to previous approaches, we envision the follower taking
the role of a test engineer developing load scenarios, which maximize the deformation of an elastic
object. Furthermore, the leader takes the role of a design engineer controlling some design variables,
such as material distribution, of the elastic object in question, while considering the deformation
under the follower’s load scenario and other design objectives. The design variables are perturbed
stochastically in a pretend manufacturing process between the decisions of the leader and follower.
Since the design engineer has to hedge against the worst possible load scenario devised by the test
engineer, this leads to a pessimistic stochastic bilevel problem. We believe that this new approach
to bilevel shape optimization can enable a new class of worst case optimization in geometric design.
To this end, we develop a proof-of-concept application to a discrete shell model for architectural
structures.

The rest of this chapter is organized as follows: First, we will begin with a brief overview of bilevel
optimization—including its stochastic extension—in Section 7.1, where we will also list approaches
related to ours. Then we will formulate the concrete bilevel problem we are interested in and sum-
marize some theoretical results regarding it in Section 7.2. In Section 7.3, we will introduce our
proof-of-concept application to discrete shells. Finally, we will discuss results of numerical experi-
ments in Section 7.4 before drawing conclusions in Section 7.5.

Remark. This chapter is the result of joint work with Johanna Burtscheidt, Matthias Claus, Sergio
Conti, Martin Rumpf, and Rüdiger Schultz published in [BCC+21].
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7.1 A Glimpse of Bilevel Optimization

In this section, we will provide a quick introduction to bilevel optimization and its stochastic exten-
sion. The main goal will be to illuminate its central concepts and convey a basic understanding of
the challenges that typically arise in the analysis of such problems. This will allow us to discuss the
specific problem we are interested in later on. This section will be of course not a comprehensive
introduction to the topic of bilevel optimization by any means. For this, we refer interested readers
to the books [Dem02] and [DKPK15], which also served as basis for this section. Furthermore, we
will also point to some of the central publications pertaining the ideas laid out below.

Bilevel optimization originates from work by Stackelberg [Sta34] on market structures in 1934.
There it was formulated as a game with two players (or decision makers) called the leader and the
follower. The leader makes their decision by minimizing an objective functional depending on the
optimal decision of the follower. This decision of the follower is in turn influenced by the decision
of the leader through modification of the follower’s objective functional and feasible set. While the
leader’s problem also contains other conditions and objectives, the decision of the leader typically
plays a central role. The optimization problem of the leader is then referred to as the bilevel opti-
mization problem. The first mathematical formalization of this idea was developed by Bracken and
McGill [BM73] in 1973 and has since been mainly used in economy-driven decision making and,
recently, machine learning. For a detailed overview of possible applications, see also [SMD18]. We
will introduce this formalization in its modern form.

We begin with the follower’s problem, which reads in general as a common parametrized con-
strained optimization problem

min
f ∈F

{
j (u, f ) | g (u, f ) ≤ 0

}
, (7.1)

with the follower’s objective j : Rn ×RN → R, constraints g : Rn ×RN → Rp , and a closed set F ⊂ RN

of admissible solutions. It is also called the lower level problem. We denote by Ψ : Rn ⇒ RN the
corresponding solution set mapping, i.e.

Ψ(x) := argmin
f ∈F

{
j (u, f ) | g (u, f ) ≤ 0

}
, (7.2)

and by ψ : Rn → R the lower level optimal value function, i.e. ψ(u) := min f ∈F
{

j (u, f ) | g (u, f ) ≤ 0
}
.

The notation g : X ⇒ Y is used for a multifunction g that maps the elements of some set X to subsets
of some set Y . Hence, f is called the decision of the follower and as the next step we have to formalize
how to compute the decision u ∈Rn of the leader. Given the intuitive description from above, one is
inclined to write the leader’s problem as

minimize
u∈U

J (u, f )

subject to G(u) ≤ 0 and f ∈Ψ(u),
(7.3)

with the leader’s objective J : Rn ×RN → R, constraints G : Rn → Rq , and a closed admissible set
U ⊂ Rn . This is also called the upper level problem and would be the complete bilevel optimization
problem. However, it is in general not well-defined, because the solution of the follower’s problem is
potentially non unique and this it is not accounted for in (7.3). To mitigate this issue, there are three
commonly-used possibilities, which we will discuss next.

In the first possibility, the leader assumes that the follower is cooperating with them and thus
is called optimistic. This means the leader can consider the follower’s solution, which also mini-
mizes their own objective. Formally, this yields the new objective Φo(u) := min f ∈Ψ(u) J (u, f ) and the
optimistic bilevel optimization problem

min
u∈U

{
min

f ∈Ψ(u)
J (u, f ) | G(u) ≤ 0

}
. (7.4)
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To show existence of solutions for this problem, a key ingredient is to show the lower semicontinuity
of Φo . This is in turn implied by the upper semicontinuity of the solution set mapping Ψ, which is
true for a wide range of problems (cf. [DKPK15, Theorem 3.3]). To derive corresponding optimal-
ity conditions, one typically transforms problem (7.4) into a one-level optimization problem. This
introduces an extensive theoretical framework for the optimistic formulation.

However, in many applications, the optimistic assumption is not justified, because the leader
can neither influence nor anticipate the follower’s decision and thus can not rule out malicious ac-
tors. Hence, in this second possibility, the leader needs to consider the worst-case scenario, i.e.
that the follower chooses the solution maximizing the leader’s objective. Formally, this yields the
new objective Φp (u) := max f ∈Ψ(u) J (u, f ), called pessimistic solution function, and the correspond-
ing pessimistic bilevel optimization problem

min
u∈U

{
max

f ∈Ψ(u)
J (u, f ) | G(u) ≤ 0

}
. (7.5)

Our problem will fall into this class. Analysis of this problem is significantly more involved than for
its optimistic counterpart. To obtain lower semicontinuity of Φp , one needs lower semicontinuity
of the solution set mapping Ψ, which is rarely the case. Indeed, existence of solutions can only be
assured under restrictive conditions on the follower’s problem (cf. [LMP87]). In Section 7.2, we will
see that also for our problem Φp is instead upper semicontinuous. One approach to guarantee the
existence of solutions is to consider a relaxation of the problem, which is analyzed, for example, in
the work by Loridan, Lignola, and Morgan [LM96; LM17; LM19]. An appropriate relaxation for our
problem will be discussed in Section 7.2.

In the third and final approach, the leader is assumed to have a method to predict the follower’s
decisions. This means they have a function such that f (u) ∈Ψ(u) for all u and if we insert this in to
(7.3), we obtain

min
u∈U

{
J (u, f (u)) | G(u) ≤ 0

}
. (7.6)

As f (u) corresponds to the selection of a solution this formulation is called the selection function
approach. Both, the pessimistic and the optimistic problem can also be regarded as special cases of
this approach. However, this formulation is most commonly used when the solution of the follower
problem is guaranteed to be unique. In this case, it is closely related to the typical formulation of
PDE-constrained optimization problems, for which there exists a broad theoretical framework (cf.
[HPUU09]). However, in general bilevel problems, y(·) does not need to be differentiable, and thus
tools from nonsmooth analysis are required to study existence of solutions and optimality criteria.
Nevertheless, we will adopt and justify this perspective in our numerical approach in Section 7.3 to
enable the practical computation of solutions.

Among the many applications of bilevel optimization, there exist some works that study appli-
cations in the context of elastic shape optimization. For example, Herskovits et al. [HLDS00] in-
vestigate the design of an elastic object, where contact to an rigid obstacle supporting the object is
only possible at certain parts of the domain. The corresponding contact problem to compute dis-
placements forms the lower level and finding an optimal geometry of the elastic object under stress
constraints forms the upper level. They assume the lower level problem to be convex and thus to
have a unique solution, i.e. they consider the third of the approaches listed above. Kočvara and
Outrata [KO95; Koč97] also consider a model where the follower problem amounts to computing
the displacement under loads for which they assume the existence of a unique solution to devise a
numerical approach. In their upper level problem, they optimize the design parameters of a truss
structure. In [Zuo15], Zuo investigated an optimistic bilevel problem for car design. On both levels,
design parameters are optimized: on the lower level, the mass distribution along the body frame
and, on the upper level, the shape of shell segments of the hull. Finally, Sinha et al. [SMD18] recently
presented a general overview on bilevel optimization, where especially a wide array of further appli-
cations can be found. To the best of our knowledge, the approach introduced in this chapter is the
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first investigation of a pessimistic bilevel problem in shape optimization with objective functionals
differing from the physical energy of the system on both levels.

Stochastic Extension. Finally, in the last part of this section, let us summarize the key ideas of
stochastic bilevel optimization. In the pessimistic problem above, the leader hedged against uncer-
tainty about the decision of the follower by considering a worst-case scenario. Nevertheless, one
might be interested in including further uncertainty into the optimization that does not directly
stem from the decision of the follower (or leader). When using bilevel optimization for modeling
markets, this could, for example, arise from further actors that are not individually modeled in the
optimization problems but their decisions are only considered as stochastic effects. Furthermore,
when the bilevel problem is used in an engineering context as we will do in the next section, this un-
certainty could arise from manufacturing errors. In stochastic bilevel optimization, this additional
uncertainty is modeled using a random variable, which enters the upper and lower levels as further
parameter. However, only the follower can observe the realization of this random variable while de-
ciding. This means the leader has to make their the decision nonanticipatorily, while being aware of
the distribution of the randomness, which is independent of the leader’s decision.

To become more specific, we consider some probability space (Ω,B,P), i.e. a setΩwithσ-algebra
B and probability measureP, and letΥ : Ω→Rk be a random variable on it, i.e. aB-Borel measurable
function. As explained, the follower observes a realization of this variable, i.e. a υ ∈ ImΥ⊂Rk , when
making their decision. This means it enters the follower’s problem simply as another parameter, i.e.
it still reads as a parametrized constrained optimization problem

min
f ∈F

{
j (u, f ,υ) | g (u, f ,υ) ≤ 0

}
, (7.7)

with objective j : Rn ×RN ×Rk →R, constraints g : Rn ×RN ×Rk →Rp , and closed set Y ∈Rm similar
to before. As before, we denote byΨ : Rn ×Rk ⇒RN the corresponding solution set mapping, i.e.

Ψ(x,υ) = argmin
f ∈F

{
j (u, f ,υ) | g (x, f ,υ) ≤ 0

}
. (7.8)

To formulate the leader’s problem, we consider the pessimistic scenario and thus use the mod-
ified objective Φp (u,υ) := max f ∈Ψ(x,υ) J (u, f ,υ), where J : Rn ×RN ×Rk → R is the objective of the
leader including the random parameter. Now, as explained before, the leader is not able to observe
Φp (u,υ) for individual realizations υ and instead has to work with the real-valued random variable
Φp (u,Υ) : Ω→ R. One has to show that this random variable is indeed well-defined, which we will
do for our problem in Section 7.2.2. To formulate the leader’s problem, one has to incorporate this
random variable into a new objective for the leader. This means one has to choose a risk measure,
i.e. a map taking a random variable to a scalar value. Here, we consider the elementary choice of the
expected value defined as E[X ] := ∫

Ω X (ω)dP(ω) for some real-valued random variable X : Ω→R. We
will also consider a class of possible alternatives, containing for example the expected excess, later
on. With all these preliminaries in place, we finally arrive at the pessimistic stochastic bilevel problem

min
u∈U

{
E

[
max

f ∈Ψ(u,Υ)
J (u, f ,Υ)

]
| G(u) ≤ 0

}
. (7.9)

In general, one can formulate this problem also in a way such that the constraints on x depend
on the random variable Υ and are required to hold almost surely. This can be transformed into a
problem of the form (7.9) by introducing constraints depending only on u that guarantee the com-
bined constraints hold for almost any realization υ of the randomness. We will take this approach
later when formulating our stochastic problem and thus consider here constraints depending only
on u.
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In a similar fashion, one can also introduce an optimistic stochastic bilevel problem. This is the
way it was first formulated in [PW99] and, for example, also studied in [BCD20]. They study stochas-
tic linear bilevel problems primarily in the optimistic regime but their results also extend to the
pessimistic regime. Further studies of the linear case include [Iva18] and [DIN17]. Stochastic bilevel
problems can be used to model complex system in a wide range of applications. This has, for exam-
ple, been exploited for telecommunication networks [Wer05], in transportation science [Pat08], for
option pricing [KP14], and supply chain planning [RSA07]. Closest to our problem are [CPW01] and
[MHKP18], which study stochastic shape optimization of elastic structures using a truss resp. a level
set model. However, they consider the problem of determining displacements under given forces as
the lower level problem and use a linear elastic model, which means that it has a unique solution.
In contrast, the follower will play the role of a test engineer in our scenario and optimize the forces
applied to the elastic structure. In this case, the problem of determining the displacements could be
considered as a third level. Nevertheless, we consider our problem to be a bilevel problem since this
third level will have a unique solution given by a linear operator.

7.2 Bilevel Problem Formulation and Analysis

With the necessary preliminaries in place, we are now in the position to formulate our bilevel op-
timization problems. As already explained, our main motivation is the study of elastic shape opti-
mization problems on discrete shells. However, in this section, we will formulate the bilevel problem
in a more general fashion while foreshadowing how this connects to our elastic shape optimiza-
tion. Furthermore, we will summarize the theoretical results about these general problems from
[BCC+21]. We will begin with the deterministic problem and then move on to the stochastic exten-
sion.

7.2.1 Deterministic Problem

We will introduce our deterministic bilevel problem starting with some necessary objects, contin-
uing with the lower level optimization problem, and then finally introducing the upper level prob-
lem. In this problem, we optimize two variables. On the one hand, we consider the parameters
u ∈ U ⊆ (0,∞)n , where U is the nonempty closed set of admissible parameters. These parameters
will describe the material in our application. On the other hand, we consider a variable f ∈ RN ,
which will later represent the forces acting on our elastic object. These forces lie in a nonempty,
low-dimensional, convex, and compact set of admissible forces F ⊂RN .

Then, we consider a function H : Rn → RN×N such that the restriction H |U is continuous and
takes values in the cone of symmetric positive definite matrices SN++. In the elastic model, H [u] will
denote the Hessian of a nonlinear elastic energy depending on the material parameters u. Further-
more, we consider a fixed positive-definite matrix M ∈ SN++, which will be the mass matrix for the
discrete reference shell. With this at hand, we can introduce a mapping y : U ×RN →RN , which will,
in the application, describe the elastic displacement of the discrete shell with n triangular facets
subject to a force distribution f from the set of admissible forces in F ⊂ RN , with N being three
times the number of vertices. It is defined by the condition

{y[u, f ]} = argmin
y∈RN

{
1

2
y⊤H [u]y − y⊤M f

}
, (7.10)

where uniqueness of minimizers follows from the positive-definiteness of H [u]. From the applica-
tion point-of-view, this means y[u, f ] is defined as the minimizer of the total free energy of a lin-
earized elasticity model with H [u] denoting the stiffness matrix and M the mass matrix.
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Now, we can define the lower level optimal solution set mappingΨ : U ⇒RN by

Ψ[u] := argmax
f ∈F

{
y[u, f ]⊤H [u]y[u, f ]

}
. (7.11)

In our application, this set will contain the forces that achieve maximal compliance, i.e. maximal
global displacements. Finally, we consider the pessimistic bilevel problem

min
u∈U

{
max

f ∈Ψ[u]
J [u, f ]

}
, (7.12)

where J : U ×RN → R denotes the cost functional of the leader, which we assume to be continuous.
In our application, this will be a tracking type objective.

The above hierarchical problem (7.10) – (7.12) can also be understood as a three-level program.
However, since the stiffness matrix H [u] ∈ RN×N is positive definite for any admissible material pa-
rameters u ∈U , the third-level problem in (7.10) has a unique solution. For this solution, we obtain
the explicit representation

y[u, f ] = H [u]−1M f (7.13)

using first-order optimality conditions. Plugging this solution into the lower level problem yields
a bilevel problem. Moreover, (7.13) leads to a simple expression for the lower level optimal value
function ψ : U →R,

ψ[u] := max
f ∈F

{
f ⊤M H [u]−1M f

}
. (7.14)

and to the reformulation of the definition ofΨ in (7.11) as

Ψ[u] = {
f ∈F | f ⊤M H [u]−1M f =ψ[u]

}
. (7.15)

Now that our deterministic problem setup is complete, we will continue with summarizing the
theoretical results from [BCC+21]. The first step is investigating if our problem as formulated above
is well-posed and solvable. This leads us to our first

Proposition 7.1. The mappingΦ : U →R defined by

Φ[u] := max
f ∈Ψ[u]

J [u, f ]

is well-defined and upper semicontinuous. Moreover, Φ is continuous at any u ∈ U for which Ψ[u] is
a singleton.

To show this proposition, one first proves that the lower level optimal value functionψdefined by
(7.14) is well-defined and continuous. Furthermore, one proves that the multifunction Ψ is closed.
From this, it follows that Ψ[u] is nonempty and compact for every u ∈ U and therefore Φ is well-
defined by the continuity of J . Then the continuity follows from a straightforward computation.

Furthermore, one can construct examples (cf. [BCC+21] and [Dem02, example on pages 30-31]),
where Φ arises as the objective function of a pessimistic bilevel program with a lower level problem
that has more than a single optimal solution. In these examples, Φ is not lower semicontinuous
and thus can not be expected to be in general. This may prevent the bilevel program (7.12) from
having an optimal solution even if U is compact. So, in general, we can not expect our deterministic
problem to be solvable.

To overcome this difficulty, we consider a model where the leader also hedges against η-optimal
lower level solutions, as proposed in [LM17]. To this end, we replace Ψ with the mapping Ψη : U ⇒
RN defined by

Ψη[u] := {
f ∈F |ψ[u]− f ⊤M H [u]−1M f < η}
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for some positive constant η, i.e. we include parameters u, whose lower level objective is at most η
worse than the optimal value. This results in the relaxed upper level problem

min
u∈U

{
sup

f ∈Ψη[u]
J [u, f ]

}
. (7.16)

As Ψ[u] ⊆Ψη[u] holds for any η> 0 and u ∈U , the optimal value in (7.16) yields an upper bound for
the optimal value in (7.12). For this relaxed problem, we can prove the following

Proposition 7.2. The mappingΦη : U →R defined by

Φη[u] := sup
f ∈Ψη[u]

J [u, f ]

is well-defined and lower semicontinuous for any η> 0. In particular, (7.16) is solvable whenever U is
nonempty and compact.

Hence, we have relaxed our deterministic problem to obtain a solvable problem with similar
behavior. There have been other similar relaxations of the pessimistic bilevel problem. For example,
in [LM96], the alternate model

min
u∈U

{
max

f ∈Ψ̄η[u]
J [u, f ]

}
with

Ψ̄η[u] := {
f ∈F |ψ[u]− f ⊤M H [u]−1M f ≤ η}

is considered. Under the present assumptions, it can be shown that

lim
η↘0

inf
u∈U

{
max

f ∈Ψ̄η[u]
J [u, f ]

}
= inf

u∈U

{
max

f ∈Ψ[u]
J [u, f ]

}
.

However, the function
Φ̄η[u] := sup

f ∈Ψ̄η[u]
J [u, f ]

is not lower semicontinuous in general, which is why we prefer the formulation (7.16).

7.2.2 Stochastic Problem

To model manufacturing inaccuracies, we will extend our deterministic bilevel problem to a stochas-
tic one. Recall, that to obtain a stochastic bilevel program, we add random variables in the upper or
lower levels. The realizations of these random variables are only observed by the follower. This
means the leader has to make their decision under the constraint that they do not know the realiza-
tion but only the distribution of the random variables, which is independent of the leader’s decision.

In our case, the randomness is supposed to represent manufacturing inaccuracies of the elastic
objects and enters the model in the following way. Let Υ : Ω → Rn be a random vector on some
probability space (Ω,B,P). Then the leader’s decision u is replaced by the point-wise perturbation
u⊙υ, where υ is a realization of the random vectorΥ. As before, ⊙ denotes point-wise multiplication.
This means realizations ofΥ describe, in our application, per-element relative errors of the material
parameters occurring during the production.

The leader now seeks to ensure the admissibility of the resulting material parameters u ⊙υ, re-
gardless of the specific realization. This entails that their set of admissible parameters is replaced
by

UΥ := {
u | u ⊙υ ∈U for all υ ∈ suppµΥ

}
,
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where µΥ := P ◦Υ−1 is the induced Borel probability measure on Rn . This ensures that perturbed
material parameters are almost surely admissible. Note that the set UΥ is closed as the intersection
of closed sets. Typically, we consider situations where suppµΥ ⊆ [a,b]n holds for some 0 < a < 1 < b
and both close to one.

From the leader’s point of view, the material vector that will be passed down to the lower level
after the stochastic perturbation can be understood as a random vector u ⊙Υ : U ⊙Ω→Rn which is
parameterized by their decision u. Similarly, the upper level outcome is a random variableΦ[u⊙Υ] ∈
L0(Ω,B,P) for any fixed u by Proposition 7.1. Here, and in the subsequent analysis, we denote the
associated classical Lp -spaces with p ∈ [1,∞] by Lp (Ω,B,P) and use L0(Ω,B,P) for the space of real-
valued measurable functions. This allows us to define the random outcome F : UΥ → L∞(Ω,B,P)
by

F[u] :=Φ [u ⊙Υ] ,

which is well-defined and continuous as we will see in Theorem 7.4. To formulate the optimization
problem for the leader, we thus need to convert it to a scalar assessment. For this, we use a mapping
R : X →R, called risk measure, with

L∞(Ω,B,P) ⊆X ⊆ L0(Ω,B,P)

to allow for varying degrees of risk aversion. This leads us to the bilevel program

min
u∈UΥ

{R [F[u]]} , (7.17)

whose well-definedness and solvability will be investigated in Theorems 7.4 – 7.6. Typically, R will
be a so-called convex risk measure (cf. [FS11, Definition 4.1]) as introduced in the following

Definition 7.3 (Risk measures). A mapR : X →R on some subspaceX as before is called a monetary
risk measure if

1. R[Y1] ≤R[Y2] for all Y1,Y2 ∈X satisfying Y1 ≤ Y2 P-almost surely, and

2. R[Y +m] =R[Y ]+m for all Y ∈X and m ∈R.

It is called a convex risk measure if it also fulfills R[λY1 + (1−λ)Y2] ≤ λR[Y1]+ (1−λ)R[Y2] for all
Y1,Y2 ∈X and λ ∈ [0,1] .

Furthermore, a risk measure R is called law-invariant if R[Y1] = R[Y2] for all Y1,Y2 ∈ X with
P◦Y −1

1 =P◦Y −1
2 .

One particular choice of such a convex risk measure is the expected value, i.e. a risk neutral
assessment, which leads to the bilevel program

min
u∈UΥ

{E [F[u]]} , (7.18)

which is well-defined as we will already see in Theorem 7.4. This particular choice will also be of pri-
mary interest in our application to elastic shape optimization. However, also other popular choices
for risk measures, such as the mean-upper semideviation of any order or the so-called Conditional
Value-at-Risk fall into this category. In contrast, the expected excess, also a popular risk measure,
is not translation invariant. Nevertheless, the results below still apply to it since this property is not
necessary in their proofs. This means the following theoretical results apply to a range of widely-
used risk measures.

Before we turn to the application, we will first summarize the results from [BCC+21] about
the well-posedness and solvability of (7.17) justifying our approach. For this, we will consider the
stochastic extension of the classical pessimistic bilevel program (7.10)–(7.12) as well as the relaxed
version (7.16). In both situations, we will assume the following
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(A1) The support of µΥ is bounded.

In the classical setting, we will need the following additional assumptions:

(A2) F is a nonempty, bounded polyhedron, i.e. the convex hull of its nonempty and finite set of
extreme points V ⊆F .

(A3) µΥ is absolutely continuous with respect to the Lebesgue measure.

(A4) There exists an open and connected set Ũ ⊆ Rn , such that U ⊆ Ũ , H |Ũ is real analytical, and
H |Ũ takes values in a closed subset of SN++.

From these assumptions, one can prove the following central result.

Theorem 7.4. Assume (A1)-(A4), then the mapping F : UΥ→ L∞(Ω,B,P) given by

F[u] :=Φ [u ⊙Υ]

is well-defined and continuous with respect to any Lp -norm with p ∈ [1,∞).

To show it, one first proves that the set of discontinuities of Φ is a Lebesgue nullset, which is
the main part of the proof. Then one shows point-wise convergence of F for convergent sequences
{uk }k∈N outside this null set and by dominated convergence this suffices to obtain continuity with
respect to any Lp -norm.

This result already proves that (7.18) is well-defined and solvable. Next, we want to extend this
to the general case (7.17) with various risk measures. This leads us to

Theorem 7.5. Assume (A1)-(A4) and let R be a convex risk measure. Then the function QR : UΥ→ R

defined by
QR[u] :=R [F[u]] =R [Φ[u ⊙Υ]]

is continuous. In particular, the bilevel stochastic problem (7.17) has an optimal solution whenever
the induced feasible set UΥ is nonempty and compact.

To show this, one proves that a convex risk measure R is continuous by exploiting its mono-
tonicity and convexity, see also [CL09, Theorem 4.1]. Then, Theorem 7.5 follows from Theorem 7.4.

Finally, let us consider the stochastic version of the relaxed problem (7.16), where the leader
hedges against all η-optimal lower level solutions. For this, we will use the notion of a law-invariant
risk measure as introduced in Definition 7.3, i.e. it agrees for all Y1, Y2 which induce the same Borel
probability measure. The following existence result is obtained for law-invariant, convex risk mea-
sures under weaker assumptions, where we no longer restrict the analysis to polyhedral F and real
analytic H due to the hedging.

Theorem 7.6. Assume (A1) and let R be a law-invariant convex risk measure. Then the mapping
QR,η : UΥ→R given by

QR,η[u] :=R
[
Φη [u ⊙Υ]

]
is well-defined and lower semicontinuous. In particular, the bilevel stochastic program

min
u∈UΥ

{
QR,η[u]

}
is solvable, whenever UΥ is nonempty and compact.

This completes our summary of the theoretical results for the stochastic formulations of the
stochastic extension of the classical pessimistic bilevel program (7.12) and the modified version
(7.16). The results show that these programs are indeed well-defined and solvable and thus we will
move on to our application.
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7.3 Application to Discrete Shells

In this section, we will consider the application of our bilevel approach to an elastic shape optimiza-
tion problem. From a high level perspective, we intend to establish the optimal elastic design of a
complex roof-type construction. This allows us to develop a pictorial understanding of the roles of
the leader and the follower. The leader in this context takes on the tasks of a construction engineer
who aims to compute the distribution of material on a given roof geometry that minimizes, under
certain constraints, the deviation from the prescribed shape of (parts of) the roof. Here, the devia-
tion is measured via a tracking-type functional, i.e. the change of a subset of the geometry measured
in a squared L2-norm. The determined material distribution is stochastically perturbed in the actual
construction phase due to manufacturing inaccuracies before being handed to the follower. The fol-
lower is then consider to be a test engineer. Their task is to perform a worst-case load analysis and
determine from a given set of possible forces — for example, load scenarios consisting of wind and
gravitational loads — those that maximize the compliance, i.e. how much the object yields under
the determined force.

For the geometry of the roof construction, we consider triangular surfaces, where each triangle
is considered to be a construction panel which are joined together at common edges. We use trian-
gular surfaces that have been previously studied in the literature on geometric design to find similar
self-supporting structures [VHWP12] . Our goal is of course different and we model the mechanical
properties of a roof construction using an adaptation of the discrete elastic shell model by Grinspun
et al. from [GHDS03], which we have already discussed in Section 2.3. In this context, the membrane
distortion describes the deformation of individual panels, while the bending distortion describes the
deformation of the joints between neighboring panels. Let us emphasize that the discrete shell ap-
proach — although rooted in mathematical elasticity — does not fully and accurately describe the
physics of such a construction. Therefore, we use it only as a design tool and not as a computational
tool for the full elastostatic modeling, which would be necessary for later planning stages in practical
applications. In fact, we consider the discrete shell model mainly as a proof-of-concept for the pro-
posed bilevel optimization approach motivating further research into its application to physically
accurate models. We underline this by reporting all physical quantities without units.

Comparing with the notation in the previous section, the design parameter u will represent the
thickness of the shell, f the applied forces, and y the resulting displacement of the shell. The mini-
mization in (7.10) then corresponds to the solution of a linear elasticity problem in (7.20), with H [u]
representing the stiffness matrix of the elastic energy. The problem in (7.11) corresponds to the fol-
lower maximizing the compliance. The leader’s cost functional J in (7.12) measures the deviation
from the prescribed shape and is defined in (7.22) below.

Discrete Shells. As explained before, we consider the sum of two terms for the elastic stored energy
in the modeling of thin shells: the stored energy caused by in-plane membrane distortion and the
stored energy reflecting bending distortion [Cia00; Lov92]. The two terms scale linearly and cubi-
cally, respectively, in the thickness of the shell. Previously, we have discussed and used a discrete
shell model where this thickness was constant on the entire surface. In light of our goal to optimize
the material distribution, we will introduce a slight modification allowing for a triangle-wise varying
thickness.

For convenience, we quickly reiterate the essential elements of the construction with varying
thickness. As before, we denote the mesh of a discrete shell by Sh = (V,E,T) consisting of vertices
V, edges E ⊂ V×V and triangles T ⊂ V×V×V. Below, we will again use the notation relating vectors
w ∈ Rk|V| to maps w : V → Rk introduced in Section 2.2. Especially, we denote evaluations w(v) of
such a map also via indexing to simplify notation, i.e. wv := w(v) ∈ Rk . We denote by X̂ : V → R3

the fixed stress-free reference configuration, i.e. immersion, of the discrete shell. Then, we describe
the deformed configuration X = X̂ + y in terms of the displacement of the vertices y : V → R3. In
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the following, we will denote by le the length of an edge e ∈ E and by aτ the area of a face τ ∈ T in
the reference configuration and not in the deformed configuration as we did in previous chapters.
The same holds for edge- and vertex-associated areas. Finally, the material thickness parameter
is assumed to be piece-wise constant on triangles and is denoted by u : T → (0,∞). We define its
evaluation on interior edges as the average of neighboring triangle values, i.e. ue := 1

2 (uτl +uτr ) for
τl ,τr ∈ T being the adjacent triangles of e ∈ E.

For a displacement y , recall that we denote the Cauchy-Green strain tensor measuring the
change of lengths, and consequently area, of a face τ by G[y]. Then, the membrane energy depends
on this tensor and is defined as

Wmem[u, y] := ∑
τ∈T

aτ uτ Wmem(G[y]|τ),

where we use the neo-Hookean energy density Wmem from Section 2.3.1. Recall, that the material
parameters are chosen such that the linearization of this energy coincides with the planar, isotropic,
linearized elasticity model with Lamé-Navier coefficients µ and λ [Cia90; Lov92]. As before, we use
µ=λ= 1.

For the bending energy, we again follow [HRS+14] and use an adaptation of the discrete shell
bending energy introduced in [GHDS03]. It measures the change of the dihedral angles between
neighboring triangles due to the displacement of the vertices. As before, the angle is denoted by
θe (X ) for an immersion X and the energy takes the form

Wbend[u, y] := γ∑
e∈E

u3
e ·

(θe (X̂ + y)−θe (X̂ ))2

ae
l 2

e (7.19)

for some constant γ> 0, which in continuum models can be expressed in terms of λ and µ. We use
γ= 1.

The stored elastic energy W[u, y] is the sum of these two energies,

W[u, y] :=Wmem[u, y]+Wbend[u, y],

where we consider the material parameters u as arguments as we will optimize them later on. The
total free energy in the presence of external forces f : V →R3 reads then as

I[u, f , y] =W[u, y]− f ⊤M y, (7.20)

where M is the diagonal mass matrix in R3|V|×3|V| with entries av at positions (i , i ) with i = 3 j − k
for j = 1, . . . , |V| and k = 0,1,2. The elastic displacements resulting from applying the forces to the
reference configuration are the minimizers of this energy.

Linearization. In what follows, we will restrict ourselves to the linearization of this model. We
denote by H [u] := ∂2

y yW[u,0] the Hessian of the stored elastic energy at zero displacements, and
obtain the linearized stored elastic energy

W lin[u, y] := 1

2
y⊤H [u]y,

as result of a second order Taylor approximation. Furthermore, we obtain the linearized total free
energy

I lin[u, f , y] :=W lin[u, y]− f ⊤M y,

whose minimization corresponds to the innermost problem introduced in (7.10). Prescribing suit-
able boundary data yv = 0 on a set of at least three vertices v ∈ V, which do not lie on a line, one
can deduce (cf. [HRS+14]) that H [u] is a positive-definite matrix. This means, as explained before,
that the energy I lin[u, f , ·] has a unique minimizer for every u and f . It is determined as the unique
solution of the associated Euler-Lagrange equation

0 = ∂yI lin[u, f , y] = H [u]y −M f .
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The Optimization Problem. To complete our practical optimization problem, we need to spec-
ify the admissible set of material parameters U , the admissible set of force parameters F , and the
cost functional of the leader J . The objective of the lower level optimal value function ψ is already
completely defined in (7.14) and equals the compliance functional evaluated for the displacement
y[u, f ], i.e. we obtain for the optimal value functional

ψ[u] = max
f ∈F

{
f ⊤M y[u, f ]

}= max
f ∈F

{
f ⊤M H [u]−1M f

}
.

The admissible set of force parameters F is assumed to consist of linear combinations of a small
number of different load scenarios. Therefore, we consider B j ∈ R3|V| representing force distribu-
tions B j : V →R3 on the reference configuration X̂ . The components of these vectors could be deter-
mined, for example, from the location of the vertex or the inclination of the triangular faces sharing
a vertex. The load scenarios B j are scaled with F j ∈R and subsequently added together. That means
we assume that the forces are of the type f = BF , where F ∈ Rd for some d ≪ 3|V| are the coeffi-
cients, and the columns B j of the matrix B ∈ R3|V|×d are the basis of a d-dimensional subspace of
forces. Furthermore, we consider different constraints on the values of the scale factors F j , i.e. we
assume that the set F is given by

F :=
{

BF ∈R3|V| | F ∈Rd , QF
k (F ) ≥ 0 for all k = 1, . . . ,K

}
(7.21)

for some smooth functions QF
k for k = 1, . . . ,K . For example, if F is to consist of the forces which

fulfill | f | ≤µ then one might choose d = 3|V|, B = Id, K = 1, and QF
1 (F ) =µ2 −|F |2.

In the problem of the leader, we constrain the material thickness parameter u element-wise from
below and above by positive constants u−, and u+ respectively. This models among other things
the capabilities of the manufacturing process. Furthermore, we assume that the total volume of
material, determined via the discrete integral of u, is below some fixed positive parameter V +, which
models cost and weight constraints.

Lastly, the upper level cost functional is considered to be of tracking type and measures the
squared discrete L2-norm of the displacement on a predefined tracking subset of the whole shell,

J [u, f ] := y[u, f ]⊤
(
χ⊙M y[u, f ]

)= ∑
v∈V

χv Mv v |yv [u, f ]|2. (7.22)

Here, χ : V → {0,1} is a discrete characteristic function with value 1 at vertices in the tracking set and
0 elsewhere.

In the stochastic setting, we restrict ourselves to the expected value E[F[u]] as the risk mea-
sure for the optimization (cf. (7.18)). Furthermore, the stochastic perturbation of the distribution
of the thickness parameter u is given by i.i.d. truncated normal distributions for each parame-
ter. This means we consider the perturbed material u ⊙Υ for Υ ∼ T N (1,σ2,υmin,υmax)|T|, where
T N (1,σ2,υmin,υmax) is the truncated normal distribution with average 1 and standard deviation σ,
truncated to the interval [υmin,υmax]. We further fix constants 0 < u− < u+ and V + > 0 and define U
implicitly by the condition

UΥ =
{

u : T →R | u− ≤ uτ ≤ u+ for all τ ∈ T,
∑
τ∈T

aτuτ ≤V +
}
⊂ (0,∞)|T|.

Barrier Formulation. To numerically solve the resulting bilevel problem (7.12), we replace the re-
strictions of u and f to admissible sets UΥ and F by smooth approximations in order to obtain a
differentiable problem. To this end, we use logarithmic barrier functions, as commonly done in in-
terior point methods (see e.g. textbook [NW06]). Hence, with the structural assumptions on the set
of admissible forces introduced above, we define the smoothed follower problem by

Ψα[u] := argmax
F∈Rd

{
y[u,BF ]⊤H [u] y[u,BF ]+αF

K∑
k=1

log(QF
k (F ))

}
, (7.23)
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Algorithm 2 Stochastic minimization of smoothed bilevel problem

Input: Initial material parameters u, Regularization parameters α, Maximal and minimal stepsizes
tmax, tmin

Output: Approximate minimizer of smoothed bilevel problem
1: Set u1 = u, t 0 = tmax

2: for i = 1, . . . , imax do
3: Draw samples υ1, . . . ,υK ∼Υ
4: for k = 1, . . . ,K do ▷ Solve follower problems
5: Solve (7.23) to computeΨα[ui ⊙υk ]
6: Compute ∂2

F F j (u,Ψα[ui ⊙υk ])−1 and ∂2
uF j (u,Ψα[ui ⊙υk ])

7: Evaluate J [ui ] := 1
K

∑K
k=1 J

[
ui ⊙υk ,Ψα[ui ⊙υk ]

]+Rα[ui ] ▷ Evaluation
8: Evaluate d i :=−DuJ [ui ]
9: Set βi =βi−1 ▷ Line search

10: if J (ui +βi d i ) ≤J (ui )+0.1βi DuJ (ui )T d i then
11: repeat
12: t i = 2t i

13: until J (ui +βi d i ) >J (ui )+0.1βi DuJ (ui )T d i or βi ≥βmax

14: βi = 1
2β

i

15: else
16: repeat
17: βi = 1

2β
i

18: until J (ui +βi d i ) ≤J (ui )+0.1βi DuJ (ui )T d i or βi <βmin

19: Set ui+1 = ui +βi d i

where αF > 0 is an appropriate scaling factor for the barrier terms.

To compute the minimizers in (7.23), we do not aim at identifying global minimizers, which
would not be feasible in practical applications unless F is a convex polyhedron. Instead, we use
an ascent method (see below) to compute isolated local minimizers. Thus we assume in the nu-
merical optimization of the leader problem, that the solution of the follower problem is of such
type, which allows us to apply conventional nonlinear optimization algorithms. In this framework,
we treat the maximizer and the set Ψα as interchangeable to simplify notation. In the examples
considered below, this assumption is justified by the use of asymmetric triangulations and by the
symmetry-breaking random perturbations of the material thickness. Thus, the logarithmic barrier
formulation of the expected value optimization problem for the leader is

min
u∈R|T|

{
EΥ

[
J [u ⊙Υ,Ψα[u ⊙Υ]]

]−αu
∑
τ∈T

aτ
(
log(uτ−u−)+ log(u+−uτ)

)−αV log

(
V +− ∑

τ∈T
aτuτ

)}

for scaling factors αu , αV > 0 as before.

Numerical Optimization. Now that we have reformulated the optimization problems, let us dis-
cuss how we approach them algorithmically. In our case, the smoothed follower problem (7.23) is
a deterministic and smooth optimization problem and computing its first and second derivatives is
straightforward. Writing the problem asΨα[u] = argmaxF∈Rd

{
j (u,F )

}
with

j (u,F ) := F⊤B⊤M H [u]−1MBF +αF
K∑

k=1
log(QF

k (F )), (7.24)
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Figure 7.1: The first panel shows the geometry of a simple roof-type geometry, where the tracking set
on the roof plateau is marked with blue dots. The Dirichlet vertices are the vertices on the horizontal
plane at the corners. The other three panels show the three basis force fields B1 (horizontal wind in the
X direction), B2 (horizontal wind in the Y direction) and B3 (vertical gravitational force caused by an
overlay on the roof). The scale of the force arrows is arbitrary but constant.

we obtain

∂F j (u,F ) = 2B⊤M H [u]−1MBF +αF
K∑

k=1

∂FQF
k (F )

QF
k (F )

, and

∂2
F F j (u,F ) = 2B⊤M H [u]−1MB +αF

K∑
k=1

QF
k (F )∂2

F FQ
F
k (F )− (∂FQF

k (F ))(∂FQF
k (F ))⊤

QF
k (F )2

.

(7.25)

With this at hand, we can use a Newton-type method with Armijo backtracking line search (cf.
[NW06, Algorithm 3.2]) to compute maximizers of j (u, ·).

Next, we want to apply a stochastic gradient method to compute minimizers for the smoothed
bilevel problem. To this end, we need to compute the gradient of the objective. For the most part,
this is straightforward with the chief difficulty of computing the derivative of the optimizerΨα[u] of
the smoothed follower problem w.r.t. the material parameters u. Since we assume that the minimiz-
ers of the smoothed follower problem are (locally) unique, we can proceed by the general procedure
of shape optimization calculus. This means that we obtain the derivative of Ψα[u] by applying the
implicit function theorem to the first order optimality conditions ∂F j (u,F∗) = 0 for an maximizer F∗

to obtain
∂uΨα[u] = ∂2

F F j (u,F∗)−1∂2
uF j (u,F∗). (7.26)

Therefore, we also compute

∂2
uF j (u,F ) = 2B⊤M H [u]−1(∂u H [u])H [u]−1MBF. (7.27)

Due to the small dimension d of the space of forces, all these derivatives can be evaluated efficiently.
Finally, we employ stochastic gradient descent [RM51] to compute approximate minimizers. In

each iteration of the descent algorithm, we draw finitely many samples υ1, . . . ,υK from the distri-
bution of the material perturbation. Using these samples, we approximate the expected value by
the empirical risk Ĵ [u] := 1

K

∑K
k=1 J

[
u ⊙υk ,Ψα[u ⊙υk ]

]
. Then a new iterate is computed by taking a

step in the direction of the negative gradient of the combination of the empirical risk and the loga-
rithmic barrier terms. For notational convenience, we collect the barrier terms in a functional Rα,
i.e. Rα[u] := −αu ∑

τ∈T aτ
(
log(uτ−u−)+ log(u+−uτ)

)−αV log
(
V +−∑

τ∈T aτuτ
)
. To determine the

stepsize, we again use an Armijo backtracking line search. Overall this leads to Algorithm 2.

7.4 Experimental Results

With all the ingredients in place, we will investigate our bilevel shape optimization method in a
range of numerical experiments. To this end, we will consider discrete shells representing curved
roofs and devise corresponding load scenarios. Let us note again, that we only consider this to be a
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Forces Material Randomness
Example Dimensions Fmax,x y Fmax,z u− u+ V + σ υmin υmax

Figure 7.2 20×20×10 0.0015 0.003 0.01 0.2 60 0.1 10−2 2
Figure 7.7 (top) 20×20×5 0.005 0.01 0.01 0.2 50 0.05 10−2 2
Figure 7.7 (btm) 70×70×15 0.005 0.01 0.01 0.2 330 0.05 10−2 2

Table 7.1: Parameters for examples.

proof-of-concept study and more research needs to be conducted on applications to more realistic
models. We will begin with introducing our setup in more detail, then discuss a series of parameter
studies on a simple roof-type geometry, and finally show results on more complex examples.

Setup. For each geometry, we fix an orientation so that the negative Z -axis is in the direction of
gravity and the supporting ground is in the X Y -plane. Then, we select a set of Dirichlet vertices near
the ground plane, representing the points on which the structure is supported. Furthermore, we also
fix the thickness of the corresponding triangles, removing these variables from the optimization.

The construction is exposed to two type of forces. First, there are forces emulating wind hitting
the structure. For a given wind direction and strength, the force on each part of the roof depends on
the local orientation. We assume that the magnitude of the force on a vertex is proportional to the
absolute value of the scalar product between the vertex normal and the wind direction. For simplic-
ity, we only consider a two-dimensional subset of possible forces, spanned by the basis vectors B1

and B2 which represent wind along the positive X - and Y -axis, respectively. In formulas, this reads
as B1,v := |N̂v,1|e1 and B2,v := |N̂v,2|e2. The direction and magnitude of the wind is then controlled
by the scale factors F1 and F2. We fix a maximal magnitude Fmax,x y of the wind-type force and use
the constraint function QF

1 (F ) := F 2
max,x y −

(
F 2

1 +F 2
2

)
in (7.23). An example of these two basis vectors

demonstrating the dependence on the orientation of the normal is shown in the second and third
panel of Figure 7.1. Second, we consider a vertical force, which could emulate the weight of snow or
rain overlay on the roof. The magnitude of the corresponding basis vector B3 on each vertex is the
absolute value of the scalar product between the vertex normal and the Z -axis, i.e. B3,v :=−|N̂v,3|e3,
and is shown in Figure 7.1 on the far right. The magnitude of gravitational load is controlled by the
scale factor F3. We ensure that it is pointing downward via QF

2 (F ) := F3. Additionally, we limit its
magnitude via QF

3 (F ) := Fmax,z −F3, where Fmax,z is the maximal magnitude of the gravitional force.
Therefore the admissible set F is a cylinder with radius Fmax,x y and height Fmax,z .

We performed most of our investigations on the simple roof-type geometry shown in Figure 7.1.
For this problem, the basic parameters, which are used in the examples if not indicated otherwise,
are listed in Table 7.1. For the truncation of the normal distribution, we chose υmin and υmax, so that
the truncation has little effect and σ is almost identical to the standard deviation of Υ. The weights
of the barrier terms wereαF = 10−4,αu = 1, andαV = 10−5. For the leader, we consider a tracking set
restricted to the central region of the roof plateau as shown in the first panel of Figure 7.1. Finally,
we chose K = 128 samples for the stochastic gradient descent.

Tracking Set. We begin with comparing the results of the leader minimizing a tracking functional
once with global support using χ ≡ 1 and once restricted to the region on the roof plateau. In the
first case, the leader and follower essentially consider the same objective up to a weighting by the
Hessian of the elastic energy. However, in the second case, their objectives substantially deviate from
each other and thus we expect to observe effects of our bilevel approach in this case. To this end,
we show the deformed configuration, the optimized distribution of the material thickness, and the
magnitude of displacements for both cases in Figure 7.2. As for all examples presented here, in the
follower problem, the maximal compliance is attained for a force F representing an extremal point
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Figure 7.2: Comparison of results for full vertex tracking set (top) and plateau tracking set (bottom) on
the simple roof-type geometry already shown in Figure 7.1. On the left, we show the deformed config-
uration as a gray surface, while the undeformed surfaces is shown as a translucent surface overlayed
with red edges. Next to the surfaces, we visualize the direction of the force (F1,F2,F3) chosen by the fol-
lower in the cylinder of admissible values. In the middle, we show the resulting material distributions
with color map 0 0.2, where boundary triangles with all three vertices subject to Dirichlet
boundary conditions are shown in gray. On the right, we show the magnitude of the deformation y
using the color map 0 ≥ 1.5. Additionally, on the far right, we show the direction of the hori-
zontal forces (F1,F2).

of the cylinder of admissible forces. In the example with localized tracking, and most of the following
ones, the element-wise bounds u+ and u− are nearly attained for at least some triangles.

In case of the tracking set centered on the roof plateau, one observes a concentration of mass in
the center region accompanied by a significant reduction of the thickness close to the four corners
where Dirichlet boundary conditions apply. The concentration and corresponding reduction break
the symmetry of the configuration w.r.t. the diagonal from the upper left to the lower right. Due to
this asymmetric reduction, the follower chooses a force pointing to the upper right and one observes
a crease line connecting the two arcs in the front at approximately half of the total height. This
is accompanied by large displacements, which are however outside of the tracking region on the
plateau and therefore do not affect the leader’s objective. In contrast, for the tracking with global
support, no such crease with strong displacements occurs. Nevertheless, the deformation exhibits a
larger displacement in the central region. Finally, beyond the mass concentration in the middle one
also observes the onset of curved beam-like structures connecting the middle region and the four
side-arcs of the roof.

Parameter Studies. We now further investigate the influence of the different parameters in our
setup. Figure 7.3 shows for the same geometry the impact of the upper bound on the total mate-
rial volume. As the total permitted mass is increased, the elongated curved “beams” connecting
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Figure 7.3: A comparison of the material distribution when varying the maximal allowed material
volume V + while keeping the other parameters fixed. The allowed volume was V + = 40,50,60,70,80
from left to right. Material thickness is shown using the color map 0 0.2. On the far right, we
show the direction of the horizontal forces, which was the same for all parameters, while the vertical
force was always chosen maximally.

Figure 7.4: A comparison of the material distribution when varying the ratio of vertical to horizontal
force Fmax,z

Fmax,x y
, i.e. the shape of the cylinder, while keeping the other parameters, especially the maximal

magnitude of horizontal force, fixed. The ratio of vertical to horizontal force was Fmax,z

Fmax,x y
= 1

2 ,1,2,4,8

from left to right. The material thickness is shown using the color map 0 0.2. On the right of
each material distribution, we show the force in the cylinder of admissible values.

the tracking region in the center with the four arcs become thicker. Once the maximal thickness is
reached in the center region and along these “beams”, further mass is invested to reinforce the re-
gions close to the Dirichlet boundaries. The curved carrier “beams” and the central region are again
designed asymmetrically w.r.t. the diagonal from the upper left to the lower right leading the follower
to push towards the upper right.

Next, we investigate the effect of the parameters characterizing the strength of the forces, Fmax,z

and Fmax,x y , while keeping the total amount of material constant. Due to the scaling invariance,

we focus on the ratio Fmax,z

Fmax,x y
. In Figure 7.4, we show that with increasing strength of the vertical

force, the “beams” become thinner and instead more material is concentrated in the central region.
Interestingly, for small values of the ratio between the two forces the material distribution is nearly
symmetrical w.r.t. the diagonal from the upper left to the lower right, while it is asymmetric for mid-
range ratios and then becomes more symmetric again for large ratios.

Finally, Figure 7.5 shows the impact of the strength of the stochastic perturbation of the material
thickness, as measured by the standard deviation, again for the tracking region on the roof plateau.
With increasing strength of the stochastic perturbation the optimal structure becomes more diffuse.
To understand this effect, let us consider the following illustrating scenario: If the leader were to con-
centrate material on a single row of triangles, then a significant reduction in thickness for even one
of those triangles would render the whole construction ineffective since it disconnects the created
beam. If, however, the leader were to spread out the same amount of material on triangles filling
a square, then an entire arc of those elements would need to experience a significant reduction in
thickness for the overall structure to noticeably loose strength. So, in the second case, more elements
with a specific geometric structure would need to have reduced thickness to impact the overall de-
sign. Therefore, in the presence of large imprecision in the manufacturing, finely-structured designs
would likely be ineffective. This could explain the more diffuse structures for stronger stochastic
perturbations.
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Figure 7.5: Comparison of material distribution when varying the standard deviation σ of the mate-
rial perturbation while keeping the other parameters fixed. The standard deviation wasσ= 5

100 , 1
10 , 2

10
from left to right. Material thickness is shown using the color map 0 0.2, where fixed bound-
ary triangles are shown in gray.
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Figure 7.6: Left: upper level relative cost values Ĵ [ui ]/ Ĵ [u0] for the iterates of the stochastic gradient
descent method (Algorithm 2) in the example shown in the bottom row of Figure 7.2. Right: corre-

sponding lower level compliance cost y[u,BF j ]⊤H [u] y[u,BF j ]
y[u,BF 0]⊤H [u] y[u,BF 0] for iterates of the Newton-type method for

the follower problem in the first upper level descent step and the initial material distribution.

Convergence. We also numerically investigated the convergence behavior of our descent respec-
tively ascent methods. The results for a representative example are shown in Figure 7.6. It depicts
the decrease of the upper level cost functional over the iterations of the stochastic descent algorithm
and the increase of the lower level compliance cost when solving the follower problem for the initial
material distribution. Latter solves of the follower problem typically require 10 to 30 iterations of
the Newton-type method per outer iteration. For the former, we can see that it reaches a plateau of
stable objective values.

Additional Examples. Lastly, we show two more complex examples of architectural designs of roof
structures, inspired by [VHWP12]. These are shown in Figure 7.7. In the top row, we use a closed hall
as the reference geometry for our bilevel optimization problem, while, in the bottom row, we use a
geometry resembling a double torus cut in half. We again list the basic parameters in Table 7.1. For
the example in the top row, the weights of the barrier terms are αF = 10−4, αu = 1, and αV = 10−3.
Conversely, for the example in the bottom row, the weights of the barrier terms areαF = 10−4,αu = 1,
and αV = 10−1. In both cases, we use the full domain as tracking set.

The main weakness of both structures is the concavity in the central part, which can be easily
deformed by the vertical force. Hence, in both optimized solutions, the material is redistributed to
prevent this. In the first case, this is done by building a stabilized ledge around the center, while in
the second case beam-like structures emerge from the two holes along with another beam from the
curve in the front. Furthermore, in the second example, the entrance is also stabilized by adding
material at the ends of its arch.
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Figure 7.7: Results for two geometrically more complex examples. In both cases, we used a tracking
on the entire domain. On the left, we show the deformed configuration as gray surface with the unde-
formed surfaces as a translucent overlay. Furthermore, we visualize the direction of the force leading
to the maximal deformation in the cylinder. In the middle, we see the resulting material distributions
using the color map 0 0.2. Boundary triangles for which all vertices are Dirichlet nodes are
shown in gray. On the right, the magnitude of the deformation y is displayed using the color map
0 0.7. Additionally, on the far right, we show the two-dimensional direction of the horizontal
forces.

7.5 Conclusion and Outlook

In summary, we studied a pessimistic stochastic bilevel problem tailored for elastic shape optimiza-
tion. Theoretical investigations reveal the continuity of the resulting risk functional under a set of
assumptions that can be relaxed when considering regularized models where the leader also hedges
against lower level solutions that are close to optimality. As a proof-of-concept, we applied the ap-
proach to a material optimization problem on triangular surfaces, where we used a linearization of
the discrete shell elasticity model also used in the first part of this thesis. Based on stochastic gra-
dient descent, we developed a numerical approach for this problem and studied its solutions on a
range of examples. This revealed interesting, symmetry breaking effects of our bilevel approach, for
example, seen in Figure 7.2.

There are only few existing works studying pessimistic stochastic bilevel problems and, to the
best of our knowledge, this is the first time pessimistic bilevel optimization has been utilized for a
shape optimization problem, where the follower problem does not consist of the physical deforma-
tion model. Since it is the first of its kind, we envision that our approach could be very interesting
for applications in geometric design. It allows for the optimization of structures under consideration
of worst-case load scenarios and stochastic perturbations of design choices, e.g., through manufac-
turing accuracies. Our current theoretical framework and numerical approach already cover many
discretized models based on linear elasticity. Hence, while we are only considering the thickness
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of a discrete shell as the material parameter in our current application, in principle, the approach
could be applied also to other design variables, for example, phase-field models as used in topology
optimization.

Nevertheless, there are multiple interesting directions for extending the framework and nu-
merical setup. For example, it would be interesting to establish our method also for continuous
PDE-constrained optimization problems on infinite-dimensional function spaces. Then our cur-
rent method would represent the spatially discretized case and the goal would be to prove variational
convergence results for spatial refinement. This would help to provide the justification of applying
our model to physically accurate elasticity models. From the point of view of elasticity, it would be
interesting to study the nonlinear elasticity models and investigate the associated nonuniqueness
issue in the lowest level problem. This would lead to a proper trilevel problem and bring new chal-
lenges for theoretical and numerical investigations. At the same time, it would enable considering
models that are valid for stronger deformations.

In the numerical optimization, currently the smoothed problems are considered with fixed reg-
ularization parameters α. It would be interesting to extend this to interior point methods — or sim-
ilar approaches from constrained optimization — and develop a numerical approach to solve the
leader’s and follower’s problem with hard constraints instead of the regularization used here. Fur-
thermore, we currently operate under the assumption that the solution of the lower level problem is
unique. This was justified for our examples, but it would still be interesting to investigate numeri-
cal methods that allow to handle non-unique solutions of the lower level problem, for example, via
methods from global optimization. Overall, this establishes a wide array of potential future work for
extending our approach.



Chapter 8

A Phase-field Approach to Surface
Segmentation

Figure 8.1: Our approach produces segments with diffuse interfaces, shown here with a red to blue
colormap, by solving a variational problem. By virtue of corresponding constraints, we can ensure
that these segments are connected and cover the same amount of area. We can produce charts with
overlapping support from these diffuse segments, shown are their images in the plane, and use them
for mapping textures to the surface. However, when only using the perimeter as objective, as in the
example on the left, the charts exhibit high distortion. Thus, we use the Yamabe equation for the
logarithmic conformal factor as a PDE constraint and an objective involving this factor, which leads
to distortion and perimeter minimizing segments as in the example on the right, where the textured
hand is shown from two perspectives.

One major challenge for the methods we have so far discussed in this thesis are performance
considerations. These methods typically involve high-dimensional nonlinear optimization prob-
lems that are expensive to solve. Hence, we are interested in methods to reduce the computational
complexity of these problems, for example, through reduced order models. In Chapter 5, we have
constructed such a reduced approach tailored to the exponential map on the space of discrete shells.
However, we are also interested in more general approaches, that, for example, do not require the
availability of datasets.

A possible of avenue is to consider techniques based on multi-resolution representations. In this
final chapter, we start to lay the groundwork for such techniques by developing a novel approach to
surface segmentation. That is for a surface S , we want to construct two surfaces S1,S2 ⊂ S such
that combining them gives the whole surface, i.e. S = S1 ∪S2, and such that their boundary γ :=
S1 ∩S2 is a curve. Our motivation to study such segmentations comes from the goal to construct
Tausch-White wavelets [TW03] on complex unstructured triangle meshes. To this end, one needs a
so-called cluster tree for the mesh, which corresponds to a hierarchical segmentation. To achieve
optimal preconditioning effects via this wavelet method, the segments have to be simply-connected

123
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and should have approximately the same size if they are on the same level (cf. [AHK14]). However,
surface segmentations have a variety of further applications in geometry processing. They are a
core component in many algorithms that are used, for example, in computational design, collision
detection, remeshing, and texture mapping.

In the rest of this chapter, we will consider the computation of atlases for a surface as proof of
concept problem for our approach. The probably most famous example of this problem is the con-
struction of an atlas of the earth, where different projections either have to distort the shape or size
of landmasses. This example directly shows that there is not a single quantity to determine what
constitutes a ’good’ atlas. Typically different properties such as preserving angles, low area distor-
tion, number of charts, and interface length need to be traded against each other. We can see an
example of the trade-off between distortion and interface length in Figure 8.1. In computer graph-
ics applications, conformal maps, i.e. preserving angles, have emerged as the dominating paradigm
for generating charts. This raises the problem of constructing such conformal charts with minimal
length and area distortion, which is typically approached by developing algorithms that try to op-
timally place the segments, and is a very active area of research. There is also a corresponding free
boundary problem, where one aims to place cuts on the surface such that it can be flattened with low
distortion but will possibly remain in one piece. However, we will focus only on the segmentation
problem, i.e. always divide the surface into multiple parts.

There are various ways to mathematically describe the segmentation of a surface. One way is to
explicitly parametrize the boundary between the segments as a curve on the surface. This is used
in many segmentation techniques for triangle meshes, where typically this curve is restricted to fol-
low edges of the mesh such that one obtains a segmentation into sets of triangles. Therefore, these
approaches are typically purely discrete formulations and do not consider an underlying continu-
ous problem. Another approach is to describe the boundary using a level set method, i.e. describe
it using the zeroth level set of a function defined on the domain and then vary this function. This
is, for example, done in [SC18], which served as major inspiration for our work. In their work, they
introduce a continuous PDE-constrained shape optimization of the distortion incurred by confor-
mally mapping the segments to the plane and discretize it via a level set approach. However, the use
of level sets requires careful handling of the interface in the optimization and they are typically not
well suited to deal with topology changes, e.g. promote them when desirable.

In our approach, we use phase-fields, a model for segments with diffuse interfaces that, in the
case of two segments, assign each point on the surface a value between minus one and one. These
endpoints figuratively correspond to two pure material phases while the range in between models
a diffuse transition. Using phase-fields for computing surface segmentations yields a topologically
flexible variational framework. This, however, could entail that our minimizers are disconnected,
which is often undesirable, for example, when creating an atlas and also when building a cluster tree.
To mitigate this, we employ the connectedness constraint introduced by [DLW17]. Furthermore, we
introduce a novel hierarchical approach that multiplicatively combines multiple phase-fields to de-
scribe more than two segments. The resulting diffuse hierarchical segmentation can then be used to
generate atlases with overlapping charts that are well-suited for applications such as texture map-
ping. It would also be suitable to generate cluster trees of the surface used in the construction of
Tausch-White wavelets. To control the distortion of these atlases, we also consider the Yamabe equa-
tion as PDE-constraint to compute the distortion induced by conformally flattening the segments as
proposed in [SC18]. We introduce a diffuse version of the Yamabe equation that sidesteps any need
to threshold the diffuse representation or explicitly cut the mesh. The resulting end-to-end diffuse
formulation of the surface segmentation problem leads to variational problems that are straightfor-
ward to discretize with affine finite elements and treat with conventional algorithms for nonlinear
optimization.

We will begin the chapter by introducing the Modica–Mortola model for phase-fields on Eu-
clidean domains together with the connectedness penalty in Section 8.1. Then, in Section 8.2, we
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ε= 0.015 ε= 0.05 ε= 0.1 t = 0 t = 300 t = 600 t = 1000

Figure 8.2: Results of the phase-field segmentation (8.22). Left: Interface minimization results for
different values of ε yielding different interface widths. Right: Adding the connectedness constraint to
the variational problem leads to a gradient descent flow (from which different time steps are shown)
that connects phases while minimizing the interface length.

will adapt this phase-field model to surfaces embedded inR3, introduce our segementation problem
in its simplest form, and introduce our approach for hierarchical segmentation using these phase-
fields. To control the distortion in this setting, we discuss the Yamabe equation for sharp interfaces,
introduce our diffuse version of it, and formulate our PDE-constrained shape optimization problem
in Section 8.3. Finally, in Section 8.4, we propose a discretization of this problem and show some
results.

Remark. This chapter is the result of joint work with Janos Meny and Martin Rumpf published in
[MRS21]. In particular, Janos Meny implemented the method and conducted the numerical experi-
ments presented in this chapter.

8.1 Phase-fields on Euclidean Domains

In this section, we will recall the necessary background on phase-fields on Euclidean domains that
we will adapt to surfaces in the following sections and then use to compute segmentations. Con-
cretely, we will focus on phase-fields of Modica–Mortola-type. They can be used to describe the
segmentation via a smooth function that intuitively models the mixture of two materials. The the-
oretical result that allows us to make this connection is the Γ-convergence of the Modica–Mortola
functional — which variationally describes the separation of these materials — to the perimeter of
subdomains. This Modica–Mortola functional is straightforward to discretize with standard finite
element methodology, as we will also see later on, and thus lends itself well for the variational for-
mulation of segmentation problems for numerical purposes. Due to the Γ-convergence result, this
yields an effective approximation of the perimeter, which has been used extensively for image seg-
mentation [BCM04], approximating motion by mean curvature [DF20], shape optimization [BC03],
simulation of material processes [Che03], and many other applications. The diffuse model also has
a long history ranging back to the likes of Lord Rayleigh, Gibbs, and Van der Waals in the late 19th
century (cf. [Row79]) with important contributions by Cahn, Hilliard, and Allen [CH58; AC72] in
the middle of the 20th century, who developed the model in a modern language and thus laid the
groundwork for many further developments.

Concretely, we represent the segments using a phase-field function u ∈ W 1,2(Ω), where Ω ⊂ Rd

is an open region. As previously mentioned, one can think of this function describing the mixture
of two materials in the domain where −1 respectively 1 indicate the pure material phases. They
mix at interfaces with intermediate values between −1 and 1 describing the ratio of this mixture.
Then, one postulates that the materials have a desire to be as pure as possible. To describe this
variationally, one considers a local chemical potential Ψ : R→ R with two global minima at ±1.The
resulting total bulk energy of the phase-field is given by

∫
ΩΨ(u)dx. Furthermore, one also postulates

that if these materials mix they do so smoothly, which is variationally measured by the Dirichlet
energy

∫
Ω|∇u|2dx of the phase-field. The weighting of these two complimentary energies controls
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Figure 8.3: Optimal profile and diffuse indicator function. Left: Optimal profile of tanh-type for min-
imizers of the Modica–Mortola functional. Right: Diffuse indicator function χ depending on phase-
field u interpolating cubically between zero and one.

the width of the interface between the two pure phases, which one describes with a parameter ε> 0,
as demonstrated in Figure 8.2. With this scaling, we obtain the Modica–Mortola functional

Pε[u] :=
∫
Ω

ε

2
|∇u|2 + 1

ε
Ψ(u)dx. (8.1)

Depending on the context, this functional is also called the Ginzburg–Landau or the (Van der Waals–
)Cahn–Hilliard functional and its L2 gradient flow is known as the Allen–Cahn equation. There a
different possible double-well potentialsΨ and we will use the popular choiceΨ(u) = 9

16 (u2 −1)2.
To compute quantities related to the different phases, it is typically desirable to describe them

using approximate indicator functions, i.e. functions that are one inside the phase and zero outside.
There are several alternatives for this (e.g. linear and quadratic interpolations) and we choose the
piecewise cubic function

χ(u) :=


0 u ≤−1
1
4 (u +1)2(2−u) −1 < u < 1

1 u ≥ 1

as a diffuse indicator for the positive phase {u ≈ 1}, which is shown in Figure 8.3 on the right. χ

is C 1 smooth on R, which is advantageous for the numerical minimization of functionals involving
χ. Furthermore, the symmetry χ(−u) = 1−χ(u) ensures that χ(−u) is a proper approximation of
a indicator function of the phase {u ≈ −1} and allows the definition of a partition of the domain
based on χ. With χ at hand, we can for example approximate the area of the phase {u ≈ 1} via its
integration, i.e.

A[u] :=
∫
Ω
χ(u)dx , (8.2)

and then it follows for the negative phase that A[−u] = ∫
Ωdx −A[u].

Sharp Interface Limit. As mentioned before, we want to use this functional as approximation of
the perimeter of subsets with sharp interfaces between them. Hence, we can ask ourselves what hap-
pens if we let the width of the interface go to zero, i.e. ε→ 0. This leads to following Γ-convergence
result due to Modica and Mortola, which also gives us the convergence of minimizers because of the
coerciveness of Pε.

Theorem 8.1 (Modica–Mortola [MM77]). Let Pε[u] :=∞ for u ∉W 1,2(Ω), then

Γ – lim
ε→0

Pε = cΨP , (8.3)
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with respect to the L1(Ω)-topology, where cΨ = ∫ 1
−1

p
Ψdu and

P[u] :=
{

H d−1 (Ω∩∂{x ∈Ω : u(x) = 1}) u(Ω) ⊆ {−1,1}

∞ else.
(8.4)

Here, ∂ denotes the measure-theoretic essential boundary.

Note that we have cΨ = 1 for our choice of the double-well potential Ψ as above. To proof this
theorem, one first considers the one-dimensional case, i.e. d = 1, where one finds an optimal profile
for a smooth transition between −1 and 1. This is done by equating the two energy contributions
yielding an ordinary differential equation whose solutions under appropriate boundary conditions
is then the sought optimal profile. For our concrete choice of Ψ from above, one obtains optimal
profiles of tanh-form shown in Figure 8.3 on the left. Then, in the general case, one shows that this
optimal profile occurs perpendicular to the interface using the so-called slicing method. The full
proof can be found, for example, in [Bra02].

The consequences of this theorem can be understood in two ways. On the one hand, if we con-
sider the Modica–Mortola functional as a physical model for phase transitions the above theorem
allows one to model these transition with sharp interfaces. On the other hand, and this is the per-
spective we take here, we can use the Modica–Mortola functional as smooth approximation of the
perimeter which is straightforward to discretize with standard finite element methodology and thus
is well suited for numerical approaches.

Connectedness Constraint. Using phase-fields to describe the segmentation allows to easily han-
dle changes of topology during the optimization. However, this also entails that with the functionals
introduced so far we now have control over the topology of the resulting segments. As motivated in
the beginning, we want these segments to be at least connected in many applications. To this end,
we will use a constraint introduced by Dondl, Lemenant, and Wojtowytsch [DLW17], which guaran-
tees the path-connectedness of phases, and introduce the necessary background on it here based
on [DNWW19].

Recall that an open set U ⊂ Rd is connected if and only if it is path-connected, i.e. for every
x, y ∈U there exists a continuous curve c : [0,1] →U with c(0) = x and c(1) = y . Dondl et al. use the
length of paths necessary to make an open set path-connected to develop a quantitative notion of
connectedness. Let F ∈C (Rd ) be a function such that F ≡ 0 on U and F > 0 onRd \U . Then we define
the weighted distance

d F (x, y) := inf

{∫
c

F dH1
∣∣∣∣ c : [0,1] →Rd , c(0) = x, c(1) = y

}
. (8.5)

This distance is zero for two points in the same connected component of U and positive for ones in
different connected components, at least if everything is sufficiently regular. From this follows that
a quantitative measure for the path connectedness of U is given by

∫
U×U d F (x, y)dxdy .

To use this for phase-fields, we would consider the preimage of an interval U = u−1([α,β]) and
apply the above measure to it. However, this would depend on u in a non-differentiable fashion.
This problem can be circumvented by introducing a smooth bump function H ∈ C1(R) such that
H > 0 on (α,β) and H = 0 on R\ (α,β). Hence, one obtains the functional

C[u] :=
∫
Ω×Ω

H(x)H(y)d F (u)(x, y)dxdy, (8.6)

which indeed is differentiable with respect to the phase-field parameter u.
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In detail, we follow [DNWW19] and choose the interval [1−p
ε,1] for the connectedness of the

positive phase with corresponding functions

Fε(u) :=
{

(u −1+p
ε)2 u ≤ 1−p

ε

0 u ≥ 1−p
ε

, Hε(u) :=
{

0 u ≤ 1−2
p
ε

1 u ≥ 1−p
ε

,

where Hε is smoothly interpolated between the given values using a cubic polynomial, which makes
it essentially a restricted version of our diffuse indicator function χ. We denote the connectedness
penalty with these specific functions by Cε. For the negative phase, we mirror this at zero, i.e. we use
Cε[−u].

In Figure 8.2, we see that combining the Modica–Mortola functional (8.1) and the connected-
ness term (8.6) in a variational problem leads to connected phases minimizing the interface length.
Indeed, [DNWW19] prove, in the two-dimensional case, a Γ-convergence result for this combina-
tion to the usual perimeter functional P under a connectedness constraint in the sharp interface
limit. To this end, we consider the connected perimeter as discussed in [DMNP22], which is for a
measurable set E ⊂R2 defined as

PC (E) :=
{

liminf
n→∞ P(E) | En → E , En indecomposable

}
. (8.7)

An open set U1 is called decomposable if there exist open sets U1,U2 such that U = U1 ∪U2 in the
L1-sense and P(U ) = P(U1)+P(U2). It is called indecomposable if it is not decomposable. This
is a measure-theoretic generalization of connectedness, and indeed every open connected set with
finite perimeter is indecomposable. For smooth sets, we can consider the usual notion of connect-
edness and define

Pr
C (E) :=

{
liminf

n→∞ P(E) | En → E , En connected and C∞-smooth
}

. (8.8)

A quick observation for these definitions is that for an indecomposable resp. connected set E we
have PC (E) =P(E) resp. Pr

C (E) =P(E). Furthermore, Dayrens et al. [DMNP22] proved that if E ⊂R2

is an essentially bounded set of finite perimeter such that ∂E = ∂∗E up to sets of H1-measure zero,
we have the identities

Pr
C (E) =PC (E) =P(E)+2St(E), (8.9)

where St(E) is the length of the Steiner tree of Ē , i.e.

St(E) := inf
{
H1(K ) | E ∪K connected

}
(8.10)

Note that we consider subsets of a bounded domain, i.e. E ⊂ Ω, and one would need to adapt the
above definitions to it. However, Dondl et al. [DNWW19] proved that these adapted functionals
agree with the ones given above when the convex hull of E is contained in Ω. This is especially the
case for convex domainsΩ and to simplify the notation we will assume this is the case for the rest of
this section.

With these preliminaries out of the way, we are in the position to formulate the convergence
result we are interested in:

Theorem 8.2. LetΩ⊂R2 be open, bounded, and convex. Let Cε be the connectedness penalty with the
functions Fε and Hε as above. Then(

Γ – lim
ε→0

Pε+ε−κCε
)

[u] =
{
Pr

C ({u = 1}) u ∈ BV (Ω, {0,1})

∞ else,
(8.11)

with respect to the L1(Ω)-topology, where κ> 0.

The proof for this theorem can be found in [DNWW19]. It shows that indeed the combination
of perimeter and connectedness penalty converges to the connected perimeter and thus motivates
our usage of it for connected segmentation going forward.
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8.2 Phase-fields on Surfaces

So far, we have introduced phase-fields and all derived notions on Euclidean spaces. However, our
problem is formulated on curved surfaces of which we do not have a parametrization available.
Hence, we will adapt all these notions to surfaces embedded in R3. We will see that this is straight-
forward to do and gives us a powerful variational framework for segmentation problems on surfaces.

To this end, we consider a Riemannian surface S embedded in R3. Then, we adapt, for a phase-
field function u ∈W 1,2(S), the Modica–Mortola to read as

Pε[u] =
∫
S

ε

2
|∇Su|2 + 1

ε
Ψ(u)da, (8.12)

where the integration is with respect to the Riemannian metric on the surface, and similarly ∇Su
denotes the weak gradient of u also w.r.t. the metric. We are not aware of a theoretical convergence
result for this functional on surfaces, but since all operations in the Γ-convergence proof are local an
argument based on charts seems plausible. The diffuse indicator function remains the same as be-
fore and thus the area functional becomesA[u] = ∫

S χ(u)da. To adapt the connectedness constraint,
we have to adapt the employed distance function to consider curves on the manifold, i.e. d F (x, y) =
inf

{∫
c F dH1

∣∣ c : [0,1] →S , c(0) = x, c(1) = y
}
. The overall functional is then again adopted by simply

replacing the notion of integration, which yields Cε[u] = ∫
S×S Hε(u(s))Hε(u(t ))d Fε(u)(s, t )dsdt .

Segmentation. Based on the phase-field approach and the corresponding connectedness con-
straint, we are in the position to formulate our basic segmentation problem. In it, we ask for a
segmentation of the surface into two segments, such that each segment is connected, covers half
the surface, and the length of the boundary between the segments is minimial. Using the func-
tionals introduced before, the phase-field version of this problem becomes the following variational
problem

minimize
u∈W 1,2(S)

Pε[u]+ε−κ (Cε[u]+Cε[−u])

subject to A[u] = 1

2
H2(S),

(8.13)

for some κ> 0 which is typically chosen to be one in experiments. In Figure 8.2, we show solutions
of this problem for two examples.

This basic formulation provides us with a variational framework to formulate further, more in-
volved segmentation problems on surfaces using phase-fields. For example, if we do not require
exactly matching areas but rather want to regularize our segmentation, then the area constraint
A[u] = 1

2H
2(S) can also be relaxed using a properly scaled quadratic penalty (A[u] − 1

2H
2(S))2.

Furthermore, other constraints such as mechanical energies of the phases could be adapted from
phase-fields on Euclidean domains or developed based on surface geometry. We will extend this
framework with a hierarchical approach to compute more than two segments and with an diffuse
adaption of the Yamabe equation to incorporate the distortion incurred by conformally mapping
the segments to the plane.

8.2.1 Hierachical Approach

In this section, we will discuss a hierarchical generalization of the above segmentation approach.
In a hierarchical segmentation, previously computed segments are recursively subdivided and this
yields a flexible and useful tool. For example, with an increasing number of segments the geomet-
ric complexity of each segment decreases, which is advantageous for applications like fabrication.
Furthermore, the segmentation hierarchy can be used for multi-resolution feature representations.
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Figure 8.4: Hierarchical segmentation of the sphere: on the left the binary tree with nodes represent-
ing the α ∈ {−1,+1}K with K = 1, 2, 3, 4. The nodes are identically color coded as the corresponding
segments on the right.

For example, it can be used to generate the cluster tree for Tausch-White wavelets [TW03] on trian-
gle meshes, which require the segments to be connected and approximately equally sized to yield
well-conditioned problems.

In our phase-field setup, one could numerically realize this hierarchy by subdividing the used
mesh along the zero-level set of the phase-field describing the segment. This is, however, undesir-
able as it requires cutting the mesh, which can be cumbersome and complicates transferring the
resulting segmentation to the original mesh. Furthermore, it obstructs establishing rigorous sharp
interface limits of the model. Instead, we construct a fully diffuse hierarchical approach. To this
end, we use additional phase-field functions for the subdivision steps and diffuse indicator func-
tions identifying the segment to be further subdivided.

To organize our hierarchical segmentation, we construct a binary tree of segments. We use multi-
indices to refer to the different nodes of this tree, i.e. a node on level K of this tree is identified by the
label α ∈ {−1,+1}K describing the subsequent left-right choices in the tree. For the root of the tree,
we use the index zero. This indexation is visualized in Figure 8.4. Given a node α = (α1, . . . ,αK ) ∈
{−1,+1}K , we refer to the nodes preceding it in the tree by αk− := (α1, . . . ,αk−1) ∈ {−1,+1}k−1 for
k ∈ {1, . . . ,K }, where α1− := 0 refers to the root of the tree.

With every node α, we associate a diffuse indicator function χα describing the corresponding
segment of the surface. Furthermore, with every non-leaf node, we associate a phase-field uα that
subdivides this segment. Then, we can define the χα recursively as the product of single level seg-
mentation functions, i.e.

χα :=χ(αK uαK−
)χα

K−

where the indicator function of the root is constant one, i.e. χ0 ≡ 1. From this, we can easily proof the
following observation, which guarantees that theχα describe a proper decomposition of the surface.

Lemma 8.3. For every K , {χα}α∈{−1,+1}K forms a partition of unity on S , i.e.∑
α∈{−1,+1}K

χα(x) = 1 (8.14)

for all x ∈S .

Proof. Recall, that by definition of χ, we have χ(u)+χ(−u) ≡ 1 for all functions u. Then, we see that∑
α∈{−1,+1}K

χα = ∑
α∈{−1,+1}K

χ(αK uαK−
)χα

K−

= ∑
α̃∈{−1,+1}K−1

(
χ(uα̃)+χ(−uα̃)

)
χα̃

= ∑
α̃∈{−1,+1}K−1

χα̃,

where the first equality is simply by definition and the second by considering the two possible
choices for αK . At this point, we can proceed via induction.
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To compute the phase-fields uα, we have to adapt our segmentation problem (8.13) to incorpo-
rate the restriction to a diffuse segment given by a χα. To this end, we consider a relaxed indicator
functionχαη =χα+η for 0 < η≪ 1, which is supported on the whole surface but is significantly damp-
ened outside the segment described by χα. The reason for the dampening will be discussed below.
We define a regularized diffuse interface length by

Pε,η,α[u] :=
∫
S

ε

2
χαη |∇u|2 + 1

ε
χαΨ(u)da + 1

σ

∫
S

(1−χα)u2 da, (8.15)

where the first term is a diffuse restriction of the Modica-Mortola functional and the second term,
with 0 < σ≪ 1, forces the phase-field to be close to zero outside the considered segment and thus
corresponds to zero boundary conditions. Furthermore, we consider a weighted approximation of
the surface area functional

Aα[u] :=
∫
S
χαχ(u)da.

Finally, for the connectedness constraint, we simply replace Fε in the previous formulation by
Fε,η,α := (χαη )−1Fε and refer to the resulting functional by Cε,η,α. This prevents the paths connecting
a disconnected phase taking a shortcut by going outside the segment that is to be subdivided.

With these functionals in place, uα is given as the solution of

minimize
u∈W 1,2(S)

Pε,η,α[u]+ε−κ (
Cε,η,α[u]+Cε,η,α[−u]

)
subject to Aα[u] = 1

2

∫
S
χαda.

(8.16)

As before in the single level segmentation problem, the constraint forces a splitting of the segment
with indicator function χα into two equally sized segments with indicator functions χαχ(u) and
χαχ(−u). The relaxation of χα in the definition of the diffuse perimeter functional Pε,η,α is required
to ensure well-posedness of the above variational problem. In fact, u is still a function on the whole
surface S and the first term of the perimeter functional is strictly coercive but the impact of values
outside the current segment to be subdivided is strongly damped by η. As the basic segmentation
problem (8.13), this problem could also be extended with other objectives and the penalty could
be replaced by a quadratic penalty. The illustrative segmentation seen in Figure 8.4 were computed
using this problem. Furthermore, we see in Figure 8.5 that hierarchical segmentation of a torus could
quickly lead to disconnected segments, which is prevent by the connectedness constraint.

This top-down approach allows to efficiently compute hierarchical segmentations where the in-
terfaces between segments can flexible relax on each level of the hierarchy. However, this type of
approach has the general limitation that the quality of lower level segmentations is limited by the al-
ready fixed higher level segmentations. In our experiments, we did not observe this to be a problem.
Nevertheless, our phase-field model would also allow to optimize all levels simultaneously by inte-
grating the objectives from (8.16) into a single objective or by using methods from multi-objective
optimization.

8.3 A Diffuse Yamabe Equation

The main application of surface segmentations that we consider in this chapter is the generation of
atlases. These are frequently used for texture mapping, i.e., transferring textures laid out in the plane
to the surface. However, if we use our method as introduced above, these textures will undergo heavy
distortions (cf. Figure 8.1 on the left). Furthermore, another potential application is the fabrication
of surfaces, where the segments would be produced by bending flat sheets of material, which is
also limited by the necessary distortion. Hence, we want to minimize the distortion incurred by
conformally mapping segments to the plane that are described via diffuse indicator functions.
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Figure 8.5: Hierarchical segmentation on a torus. Left: the segmentation of a torus might quickly lead
to disconnected local minima (top). Adding the connectedness constraint to the objective prevents this
(bottom). Right: Different time steps of a gradient descent scheme for the variational problem (8.24)
with connectedness constraint on level K = 2 and the segmentation of the associated left half of the
torus starting from a random initialization.

In this section, we will discuss how to reduce the distortion of these chart mappings via opti-
mization of the underlying surface segmentation. To this end, we will first discuss the necessary
basics from differential geometry, and then explain the Yamabe equation for computing the confor-
mal distortion for subsets U of S without having to compute the conformal flattening itself. Finally,
we will introduce a diffuse version of it based on our phase-field approach and the corresponding
PDE-constrained optimization problem to minimize the distortion.

Conformal Flattening. We will begin with recalling the necessary notions regarding conformal
equivalence and maps from differential geometry. For these notions, we follow Kühnel [Küh15].

Definition 8.4 (Conformal equivalence). Let S be a surface. Two metrics g , g̃ on S are conformally
equivalent if there exists a smooth function s : S →R such that

g̃x = e2s(x)gx

for all x ∈S . The factor e2s is called conformal factor and s is called the logarithmic conformal factor.

The conformal factor always has to be positive, which is the main motivation to write it in the
form e2s . With this definition of conformal equivalence at hand, we can extend it to transformations
of surfaces.

Definition 8.5 (Conformal map). Let φ : S → S̃ be a diffeomorphism between Riemannian surfaces
(S , g ) and (S̃ , g̃ ). Then φ is called a conformal map if the pulled-back metric φ#g̃ is conformally
equivalent to g .

This means that we can also associate a logarithmic scale factor s : S →Rwith a conformal map
φ. Conformal maps preserve the local angles on a surface, i.e. the angles between tangent vectors,
but distort lengths and areas. This distortion is quantified by the conformal factor e2s (or equiva-
lently the logarithmic conformal factor s).

Definition 8.6 (Conformal flattening). Let U ⊂ S be an open subset of a Riemannian surface (S , g ).
Then we call a conformal map φ : U →R2 a conformal flattening of U .

By the uniformization theorem (see e.g. [Abi81]), such a conformal map exists for all open sub-
sets U ⊂S with disk-like topology.
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Yamabe Equation. Our goal is to compute a segmentation of S that minimizes the distortion in-
curred by conformally flattening the segments. However, explicitly computing a conformal flatten-
ing is a challenging numerical problem in itself and thus we would like to avoid it in our optimiza-
tion. To this end, we follow the idea of [SC18] to compute s via the Yamabe equation without need-
ing to explicitly compute the flattening. Below, we recall the necessary background on the sharp
interface case before we introduce our adaption to diffuse interfaces. We start with the following
characterization of how the Gauß curvature differs between conformally equivalent metrics.

Lemma 8.7. Let (S , g ) be a Riemannian surface. Given a conformally equivalent metric g̃ , the Gauß
curvature K̃ induced by it is related to the original Gauß curvature via

e2sK̃ = K +∆S s.

A proof for this classical result can, for example, be found in [SY94]. Based on this, Springborn,
Schröder, and Pinkall [SSP08] proved that with uniform boundary conditions — corresponding to a
uniform scaling of the boundary — this equation actually suffices to compute the best possible scale
factor of a flattening in terms of its Dirichlet energy.

Proposition 8.8 ([SSP08]). Let (S , g ) be a connected Riemannian surface with boundary. Then the
logarithmic scale factor s of a conformally equivalent flat metric g̃ minimizes the Dirichlet energy
among all such scale factors if it solves the Poisson equation ∆S s = −K with boundary conditions
s|∂S = const.

The proof can be found in [SSP08] and essentially shows that the variation of the Dirichlet energy
w.r.t. harmonic functions is controlled by their boundary values and for s to be a critical point it has
to be constant along the boundary.

All of this can also be applied to an open connected subset U ⊂S . This leads to the equation

∆S s =−K , U ,

s = 0, ∂U .
(8.17)

The choice of zero boundary condition means that the metric does not change on the boundary,
i.e. the boundary length is preserved. This PDE is also called the Yamabe equation [Aub98] as it
forms the core of the Yamabe problem in higher dimensions. Solving this PDE thus allows us to
compute the scale factor with minimal Dirichlet energy when flattening one of our segments without
computing the flattening itself. Hence, we can use it as a PDE-constraint in a shape optimization of
the segments and use the resulting (logarithmic) scale factor in the objective.

However, the formulation (8.17) requires an explicit subset of the surface, whereas in our phase-
field approach these are only described via approximate indicator functions. We will therefore in-
troduce a diffuse version of the Yamabe equation next.

Diffuse Yamabe Equation. To this end, we make use of the variational formulation of the Yamabe
equation

min
s∈W 1,2

0 (U )

∫
U

1

2
|∇s|2 −K s da. (8.18)

For u being a fixed phase-field segmentation of S as introduced in Section 8.2, we want to solve the
Yamabe equation for both diffuse segments identified by χ(u) and χ(−u), respectively. Therefore,
we replace the restriction of (8.18) to U by the diffuse indicator functions and obtain

Definition 8.9 (Diffuse Yamabe Equation). Given a phase-field u ∈ W 1,2(S), we define the solution
s of the diffuse Yamabe equation for the positive phase as minimizer of

min
s∈W 1,2(S)

Yε[u, s] :=
∫
S

1

2
(χ(u)+η)|∇s|2 −χ(u)sK + 1

ε
(1−χ(u))s2 da. (8.19)
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Figure 8.6: Solutions of (8.22) with distortion objective JYam on a sphere for different weights of the
objective. The three spheres on the left show results without the connectedness constraint leading to
disconnected phases with small ’islands’, while the three spheres on the right show results using the
connectedness constraint. In both cases, the interface parameter was ε = 0.023 and the weights were
(from left to right) ω= 5,10,15 respectively.

The logarithmic scale factor of the negative phase is then given by solving the diffuse Yamabe
equation for −u. In the functional Yε, the factor χ(±u) localizes the minimization problem to one of
the phases. The Dirichlet boundary conditions are taken care of by a quadratic penalty term on the
complementary phase forcing s to zero, which is akin to Nitsche’s method for boundary conditions.
Furthermore, the η-damping ensures global regularity and coercivity. The ε−1 scaling of the penalty
in (8.19) ensures an increasing adherence of the boundary conditions for ε→ 0.

The diffuse Yamabe equation is a quadratic problem in s, which means its solution can be com-
puted by solving a linear problem. Furthermore, due to the uniform coercivity of the weighted
Dirichlet energy and the smoothness of all coefficient functions s[u] depends smoothly on u. Com-
puting the Euler-Lagrange equation of (8.19), for fixed u, in direction θ ∈W 1,2(S) yields

∂sYε[u, s](θ) =
∫
S

(χ(u)+η)∇s ·∇θ−χ(u)θK + 1

ε
(1−χ(u))sθda.

Shape Optimization. Now, we define, as already announced, a new objective functional for our
basic segmentation problem (8.13) based on the logarithmic scale factor ±s. Multiple options for
this objective have been discussed in [SC18], for example the Dirichlet energy of ±s. However, we
will only consider its squared L2-norm

∫
S s2da, leading to the objective

J Yam[u] =
∫
S

s[u]2da +
∫
S

s[−u]2da,

where each of s[±u] is the unique minimizer of the diffuse Yamabe equation (8.19) for the phase-
fields ±u.

This energy has a mechanical interpretation through the Hencky strain. If we interpret the con-
formal flattening of a segment as a deformation, then its Cauchy–Green strain tensor is a diagonal
matrix with entries e2s . The Hencky strain tensor is defined as the logarithm of the square-root of the

Cauchy–Green strain tensor, i.e. log
√

DφT Dφ, which in our case is a diagonal matrix with entries
s. Thus, s describes the Hencky or logarithmic strain of the flattening, which measures the geodesic
distance of the deformation gradient to the special orthogonal group in the canonical Riemannian
metric on the general linear group, cf. [NEOM13]. Because of this mechanical interpretation, we
follow [SC18] and call

∫
S s2da the Hencky objective. This interpretation also motivates its usage in

the objective J Yam, which is then well-suited for applications in design problems, where one is in-
terested in manufacturing the surface by constructing the segments out of flat material (cf. [SC18]).

With this objective in place, we can finally formulate our PDE-constrained optimization problem
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Figure 8.7: Three different time steps of the distortion minimization on a sinusoidal shaped surface.
Interface width is given by ε = 0.1 and the distortion weight by ω = 10. The result is similar to an
analogous example by [SC18].

as
minimize
u∈W 1,2(S)

Pε[u]+ωJ Yam[u]+ε−κ (Cε[u]+Cε[−u])

subject to s[±u] minimizing Y[±u, ·], and

A[u] = 1

2
H2(S).

(8.20)

As before, we are looking for connected segments that cover half the surface that minimize a com-
bination of interface length and distortion. The factor ω controls the trade-off between interface
length and distortion when flattening. Let us remark that the ε−1 scaling of the penalty in (8.19)
appears to be the appropriate choice. In our experiments, we observed that, in a descent scheme
for (8.20), scaling the penalty with ε−β for β > 1 the distortion measure is reduced at the expense
of a widening of the interface between the segments. Figure 8.6 shows a comparison of distortion
optimal segmentation without and with connectedness constraint.

8.4 Discretization, Implementation, and Experiments

With the model in place, we are interested in solving the variational problems on complex surfaces.
In this section, we will therefore discretize the different functionals, which will be a straightforward
application of finite element methodology for the most part. This will yield an easy to implement
method to compute distortion-minimizing hierarchical segmentations of complex triangular sur-
faces. Afterwards, we will show results of our method on a variety of examples and also demonstrate
how it can be used to generate atlases for texture mapping applications.

8.4.1 Discretization

We employ simple affine finite elements to discretize problem (8.13). To this end, we will use a
manifold triangle mesh Sh = (V,E,T) with vertices V ⊂ R3, edges E ⊂ V×V, and faces T ⊂ V×V×V.
Here, the subscript h indicates the grid size.

We first briefly recall the definition of the mass and stiffness matrix necessary for the Modica–
Mortola functional. Let θ1, . . . ,θ|V| be the nodal hat basis functions, i.e. they are piecewise linear
functions on Sh such that θi (v j ) = δi j . Then we consider the finite element space spanned by them,
i.e.P1(Sh) := span{θ1, . . . ,θ|V|}. Furthermore, we assume that the finite element approximation of u is
in P1(Sh) with coefficient vector u ∈ R|V|, i.e. u = ∑|V|

i=1 uiθi . The double well potential of the phase-
field Ψ(u) is nonlinear and therefore not an element of P1(Sh) , even if the phase-field u itself is.
ProjectingΨ(u) onto P1(Sh) yields the coefficient vectorΨh(u) ∈R|V|, Ψh(u)i =Ψ(ui ), i.e. the piece-
wise linear interpolation of its nodal values. We will use the approximation for this discretization
of the bulk potential part of the Modica–Mortola functional instead of a higher-order quadrature
scheme.

The stiffness matrix S ∈R|V|×|V| is the discretization of the symmetric, positive-semidefinite qua-
dratic form

∫
S∇ f ·∇g da and thus its entries are given by Si j := ∫

S∇θi ·∇θ j da. This yields the well-
known cotan entries [Dzi88] for triangle meshes. Hence, the Dirichlet energy of the phase-field u is
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discretized by uT Su. Moreover, the mass matrix M ∈R|V|×|V| discretizes the quadratic form
∫
S f g da.

We choose a diagonal mass matrix, sometimes also called lumped mass matrix. The lumped masses
m ∈ R|V| are given by averaging the areas of triangles adjacent to a vertex, i.e. mv = 1

3

∑
τ∈T:v∈τaτ,

where aτ is the area of the triangle τ. The corresponding mass matrix is then the diagonal matrix
M := diag(m). Using the lumped mass matrix, the integral of Ψh(u) over the surface of Sh can be
approximated by a simple dot product mTΨh(u), yielding

Pε[u] = ε

2
uT Su+ 1

ε
mTΨh(w) (8.21)

as the discretization of the Modica–Mortola functional (8.1). Similarly the areaA(u) is approximated
by mTχh(u) with χh(u) ∈ R|V| defined via χh(u)i = χ(ui ). With this, we have discretized all basic
variational ingredients for phase-fields. Next, we will turn to the more involved elements, i.e. the
connectedness constraint, the hierarchical approach, and the Yamabe constraint.

Connectedness Constraint. A convenient discretization of the connectedness constraint was in-
troduced in [DW21], which is based on shortest-path searches in the dual graph of the triangle mesh.
We briefly summarize it here for the sake of completeness. First, one computes for every triangle τ
the average uτ of the discrete phase-field u. Then every edge in the dual graph, i.e. every interior
edge of the mesh, is equipped with a weight that is given by the product of the average value of
Fε(uτ) of the two adjacent triangles and the average of their diameters. This way distances on the
dual graph approximate distances given by d Fε(u). Thus, to discretize the double integral Cε[u], com-
ponents of the dual graph consisting of triangles with zero distance to each other are computed, as
well as the distances and shortest paths between these components. This grouping into connected
components significantly reduces the necessary runtime, as it prevents computing unnecessary dis-
tances between all pairs of triangles. Then the discretization Cε[u] is given by the sum of pairwise
products of integrated values of Hε(u) for every pair of distinct components weighted by their dis-
tance. From this, also a discrete gradient can be computed, which is supported along the aforemen-
tioned shortest paths. This yields an efficient discretization of the connectedness constraint and for
further details on this discretization, we refer the reader to [DW21].

Overall, this leads to the finite-dimensional nonlinear optimization problem

minimize
u∈R|V|

Pε[u]+ε−κ (Cε[u]+Cε[−u])

subject to mTχh(u) = 1

2
a

(8.22)

discretizing the basic segmentation problem (8.13) with the total surface area ofSh given by a = trM.
As (8.22) is a nonlinear optimization problem, we will compute local minimizers that depend

on the initialization of u. To this end, we opted for the simple approach of initializing with random
values in [−1,1]. However, to reduce the number of necessary iterations, one could also use fast
heuristics, such as clustering of normal directions, or input from users to generate the initialization.

Hierarchical Approach. Let u ∈ R|V| be the FEM basis coefficients of the discrete counterpart of
the phase-field u as before. To discretize the functionals of the hierarchical segmentation approach
from Section 8.2.1, we first need to discretize the characteristic functions χα. Here, we simply ap-
proximate χα by a piecewise linear interpolation of its nodal values. To this end, we denote the
vector of nodal values of χα by wα, i.e. wα

j = χα(v j ) for v j ∈ V. Note, that in theory, with each level
the χα become polynomials of increasingly higher order even for piecewise linear uα. However, they
are (nearly) constant on large parts of the mesh and the transition regions of one indicator function
is typically in an area where the indicator function of the parent is constant. Thus, a piecewise linear
interpolation and corresponding quadrature should still be sufficiently accurate, which is supported
by our experiments.
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To discretize the Dirichlet part of the hierarchical Modica–Mortola functional (8.15), we consider
the modified stiffness matrix Sαi j := ∫

S χ
α
η∇θi ·∇θ j da. Then, the Dirichlet part is given by uT Sαu. To

compute the entries of Sα, we use a simple midpoint quadrature, which leads to weighted cotan
entries. We use nodal quadrature for the bulk part of the energy, which leads to the discrete approxi-
mation mT (wα⊙Ψh(u)). Here, we use ⊙ to denote the componentwise product of vectors as before.
Finally, the penalty of values outside the current segment is also discretized using nodal quadrature
yielding the approximation (1−wα)⊙u⊙u.

Together, the discrete counterpart to the adapted Modica-Mortola functional from (8.15) is given
by

Pε,η,α[u] = ε

2
uT Sαu+ 1

ε
mT (wα⊙Ψh(u))+ 1

σ
mT ((1−wα)⊙u⊙u). (8.23)

Furthermore, the discrete version of the hierarchical area functional is simply given by mT (wα ⊙
χh(u)). Thus, our discrete optimization problem becomes

minimize
u∈R|V|

Pε,η,α[u]

subject to mT (wα⊙χh(u)) = 1

2
mT wα.

(8.24)

In fact, in the spatially discrete model, the η-regularization of the perimeter functional turned out to
be no longer necessary because of the regularizing effect of the finite element discretization.

Yamabe-based Segmentation. We discretize the logarithmic conformal factor via piecewise affine
functions as we already did for phase-fields, i.e. we consider s ∈ P1(Sh) with coefficients s ∈ R|V|.
Then, we need a discretization of the Gauß curvature for triangle meshes to discretize the (diffuse)
Yamabe equation, for which we use the usual angle-defect discretization (see e.g. [CM03]) which we
already introduced in Section 2.2 and briefly recall here. It is given by nodal values K ∈ R|V|, where
Ki = 1

mi
(2π−∑

τ:vi∈τγτ,vi ) for interior vertices vi and Ki = 1
mi

(π−∑
τ:vi∈τγτ,vi ) for vertices vi on the

boundary. Recall that γτ,v is the interior angle in facet τ at the vertex v .
In the discretization of the diffuse Yamabe equation (8.19), we directly consider the linear prob-

lem arising from finding solutions of the Euler-Lagrange equation. This will lead to a linear system
A[u]s = b[u], with A[u] ∈ R|V|×|V| and b[u] ∈ R|V|. To discretize the right hand side of this equation,
i.e. the linear term in (8.19), we again use nodal quadrature, which leads to b[u] := m⊙χh(u)⊙K .
For the Dirichlet part of the linear system, we follow the same procedure as for the hierarchical ap-
proach and compute the entries of a modified stiffness matrix Si j [u] := ∫

S (χ(u)+η)∇θi ·∇θ j da using
midpoint quadrature. As before, this leads to a matrix with weighted cotan entries. Finally, for the
quadratic penalty on the negative phase, we use again nodal quadrature leading to a diagonal matrix
with entries (1−χh(u))⊙m.

Combined, this leads to the discretization of the diffuse Yamabe equation (8.19) by the linear
system A[u]s = b[u], where

A[u] := S[u]+ 1

ε
diag((1−χh(u))⊙m), b[u] := m⊙χh(u)⊙K .

The system matrix A[u] is positive-definite due to the global coerciveness of the Dirichlet term and
the fact that the diagonal penalty matrix eliminates its kernel. This means that we have a unique
solution s[u] of the discrete diffuse Yamabe equation for all u ∈ R|V|. Furthermore, the coefficients
of the linear system smoothly depend on u, which means that this solution s[u] is also differentiable
with respect to u.

To use this discrete logarithmic scale factor in a shape optimization problem, we discretize JYam

using nodal quadrature, which yields the discrete objective

JYam[u] = s[u]T Ms[u]+s[−u]T Ms[−u].
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Figure 8.8: Distortion minimizing segmentation of the ‘fertility’ model (courtesy of the AIM@SHAPE
project). Interface width is given by ε = 0.02 and the distortion weight by ω = 0.1. For this example,
minimizing (8.20) yields segment boundaries following paths with negative Gauß curvature.

To minimize this objective JYam[u], we need to compute in particular its derivatives. Here, we follow
the general procedure of shape optimization calculus. Recall, that we have s[u] = A[u]−1b[u], which
implies that the first variation is given by

∂us[u] = A[u]−1 (∂ub[u]−∂uA[u]s[u]) .

By applying the chain rule and using that A[u] is symmetric, we obtain

∂uJYam[u] =−2(∂ub[u]−∂uA[u]s[u])T A[u]−1 (Ms[u])

−2(∂ub[−u]−∂uA[−u]s[−u])T A[−u]−1 (Ms[−u]) .

Hence, computing the derivative mainly amounts to solving two linear systems, where the matrices
are the same as for the diffuse scale factors. If we use direct solvers such as a Cholesky decomposi-
tion, we can reuse the factorization and only have to compute additional back substitutions. With
this, we have introduced discretizations for all elements of our hierarchical segmentation approach
with distortion minimization using the Yamabe equation as PDE-constraint.

8.4.2 Results and Applications

The described method was implemented in C++ and tested on variety of examples, which were
remeshed isotropically using the method described by [BK04]. The Eigen library [GJ+10] was used
for numerical linear algebra and CHOLMOD [CDHR08] and UMFPACK [Dav04] from the SuiteS-
parse collection were used as direct linear solvers. For unconstrained optimization problems, i.e.
when using a quadratic penalty for the area constraint, libLBFGS, a limited memory BFGS imple-
mentation based on the work [Noc80], was employed. For constrained optimization problems, the
open-source software package Ipopt [WB06] implementing an interior point method was used.

In Figure 8.2 on the left, we see the influence of the interface width on the optimal phase-field
in the basic segmentation problem (8.22) using only the area constraint. On the right, we see that
this segmentation problem can indeed lead to disconnected phases, which are joined together after
adding the connectedness penalty to the objective. In the hierarchical approach, we can see a similar
behavior in Figure 8.5.

Adding the (discrete) Yamabe equation as PDE-constraint together with the objective JYam allows
to also minimize distortion, where the trade-off between interface length and distortion is controlled
by the factor ω. In Figure 8.6, the effect of this factor ω is shown when segmenting a sphere. Fur-
thermore, in Figure 8.7, we show steps of a gradient-based optimization of the problem without the
area constraint, which leads to results similar to [SC18]. Finally, we see another example of a dis-
tortion minimizing segmentation for a more complex surface in Figure 8.8, which yields segment
boundaries along paths with negative Gauß curvature in this example.
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Figure 8.9: Hierarchical segmentation and atlas generation for K = 2, 3 and 4. The scalar functionsχα

are multiplied with RGB color values identifying the different segments. Thereby, the diffuse glueing
of the chart domains is visible via the color blending close to the boundary of the chart domains Uα

and their flattened counterparts ϕα(Uα). On the lower right, texturing using the smooth phase-field
based blending is compared with a conventional thresholding approach by zooming in on a textured
surface. Note that, in the texturing application, we deliberately used a wider interface width ε to
generate smoother transitions between the segments. On the bottom, we show different time steps of
the descent scheme for one of the hierarchical segmentation steps on level K = 4.

Atlas Generation. To generate atlases from our hierarchical segmentation, we pick up the parti-
tion of unity {χα}α∈{−1,+1}K on level K of the hierarchy and consider their support as chart domains.
However, given that optimal profiles for phase-fields minimizing the Modica–Mortola functional are
of tanh-type (see above), the χα will get close to zero but never actually become zero for ε> 0. This
means, that all χα have effectively global support, which would mean we always have to flatten the
whole surface, which is of course not our intention. Thus, we introduce a shifted diffuse indicator
function given as

χδ(u) :=


0 u ≤−1+δ

1
4(1−δ)3 (u +1−δ)2(2(1−δ)−u) −1+δ< u < 1−δ
1 u ≥ 1−δ

,

which reaches its global extrema earlier controlled by a small parameter δ with 0 < δ≪ ε. As before,
it still holds that χδ(u)+χδ(−u) ≡ 1 and thus we can construct partitions of unity {χα

δ
}α∈{−1,+1}K for

all levels K the same way as in Section 8.2.1. Then we define Uα := {x ∈ S | χα
δ

(x) ̸= 0} for all levels
K as chart domains forming covers of S . To complete the atlas, we have to compute the actual
chart maps ϕα : Uα → R2. One can use any state-of-the-art algorithm for conformal flattening for
this task. In the implementation, LSCM [LPRM02] was chosen due to its uncomplicated availability,
while other, nonlinear algorithms such as CETM [SSP08] would also be possible. In Figure 8.9, we
show the resulting atlases for different K .
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Figure 8.10: Segmenting and flattening a cube with rounded corners. The cube exhibits isolated re-
gions of Gauß curvature at its rounded corners, which leads to a segmentation with boundaries not
following the edges of the cube. Instead, the boundaries are such that their length in the isolated
region is maximized while keeping the total length under control. From left to right: The discrete
Gauß curvature shown as color map with dark blue indicating approximately zero curvature and yel-
low approximately 3.12 curvature. Solutions of (8.22) with distortion objective JYam and distortion
weight ω= 10. Conformally flattened segments in the plane with texture applied. Textures mapped to
rounded cube, where perpendicular lines show the conformality and equally sized squares show the
low distortion of the charts.

Using the chart maps, any function f defined on R2 can be lifted to the surface by the pull-back
f α := f ◦ϕα. This way we obtain multiple functions defined on the surface, one for each chart. These
functions can then be blended via

f S :=∑
α
χαδ f α

using the χα
δ

as weighting functions, yielding smooth transitions due to them being a smooth parti-
tion of unity.

This blending and the underlying atlas can be useful for different applications requiring a do-
main decomposition, such as partition of unity methods for finite element simulations and ODE
solvers on surfaces. The hierarchical nature of our segmentation could be used to devise multi-
resolution approaches for these applications, e.g. in the context of the mentioned Tausch–White
wavelets. As a simple proof of concept, here, we only demonstrate its use for an improved tex-
ture blending that can outperform conventional thresholding based approaches which segment
the mesh into disjoint patches with sharp transitions between them. Concretely, we consider maps
f : R2 → Rc with Rc being some color space as demonstrated in Figure 8.9. A similar approach was
used in [PB00] for a seamless blending of textures on surfaces using subdivision methodology.

This texture transfer can also be used to visually investigate the scale factor of a conformal flat-
tening by observing the distortion of a texture mapped from the plane. For example, in Figure 8.1,
we see on the left that only minimizing the perimeter leads to flattenings incurring severe distortions
of mapped textured. On the right, we see that adding the Yamabe constraint and corresponding ob-
jective indeed strongly reduces these distortions. Note, that in both cases, the maps to the plane are
conformal, which can be seen by the perpendicular intersections of lines in the texture mapped to
the surface. Finally, Figure 8.10 shows another example for low distortion segmentations and close
to conformal texture transfer from associated chart domains onto the surface, which has highly con-
centrated Gauß curvature.
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8.5 Conclusion and Outlook

In this chapter, we have introduced a phase-field model for the variational segmentation of surfaces.
We started with a basic segmentation problem by adapting the Modica–Mortola functional together
with a corresponding connectedness constraint from the Euclidean case to curved surfaces. This al-
lowed us to formulate a variational problem for dividing the surface into two connected and equally-
sized segments. We extended this approach to divide the surface in to a larger number of segments
via a hierarchical approach, where the variational problems for further dividing a segment is formu-
lated using the diffuse indicator functions. Finally, we introduced added distortion minimization to
the model by using a diffuse version of the Yamabe equation as PDE-constraint and penalizing the
computed logarithmic scale factor. For all of this, we introduced a straightforward discretization via
affine finite elements that proved to be effective in various experiments.

Our approach has the advantage that it leads to a PDE-constrained optimization problem that
is straightforward to discretize and describes the segmentation problem in an end-to-end diffuse
way. This means we do not have to worry about explicitly cutting the mesh or how to generate
appropriate descent directions as was the case in previous approaches. The downside of this is,
that the mesh needs to be of high-resolution for narrow diffuse interfaces and larger weights of the
distortion objective. Furthermore, the triangle size has to be mostly isotropic to prevent needing to
choose a unnecessarily large ε. This requires access to a process able to generate such high quality
meshes, e.g. a subdivision surface model.

This is, however, a limitation that is shared by many PDE-based mesh processing approaches.
One possible remedy for this are intrinsic triangulations [BS07], which overlay another triangle mesh
over a given one allowing to control different characteristics of these meshes while preserving the
extrinsic geometry. Recently, there has been interest in constructing efficient data structures for such
triangulations, cf. [SSC19]. Thus they might be an interesting tool to improve the implementation of
our method to also work on low-resolution and low-quality meshes.

We envision that our general (hierarchical) phase-field approach might also be interesting for
other segmentation problems on surfaces. For example, one could ask for segments with consistent
normal directions or convex segments, which is interesting for collision detection applications. In
this sense, our current results could be understood as a promising proof-of-concept for phase-field-
based approaches in geometry processing.

Regarding our distortion optimization, it would be interesting to extend it to other phase-field
models. On the one hand, we could consider vector-valued phase-field that divide the surface into
more than one segment at a time. This would, for example, be interesting in fabrication applications,
where one wants to divide the surface into many segments than can be flattened without much dis-
tortion but is not interested in the hierarchical nature of our approach. On the other hand, it would
be interesting to investigate the corresponding free interface problem, i.e. considering actual cuts
instead of segments. In terms of phase-fields, this would mean to consider the Ambrosio–Tortorelli
functional for the diffuse perimeter and adapt the penalty in the diffuse Yamabe equation.

Finally, our approach is currently also missing a rigorous theoretical investigation. In the diffuse
case, it would be worthwhile to rigorously proof the existence and uniqueness of solutions for the
diffuse Yamabe equation, and prove the well-posedness of as well as existence of minimizers of the
PDE-constrained shape optimization problem. Afterwards, one could investigate convergence to a
sharp interface limit again first for the diffuse Yamabe equation and then the shape optimization
problem. All this leaves open a number of interesting avenues for potential future work.
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