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1 TECHNICAL COMPUTATIONS
1.1 Proofs of Lemmata

Lemma 1. Let 𝐹 ∈ R𝑛,𝑚 with 𝑛,𝑚 > 0 be a linear operator be-
tween two finite-dimensional Hilbert Spaces and �·� the corresponding
Hilbert–Schmidt norm then

a) for all injective Φ𝑘 ∈ R𝑛,𝑘 , 𝑘 > 0
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b) and for all injective Φ𝑘 ∈ R𝑚,𝑘 , 𝑘 > 0
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Proof. Considering an injective Φ𝑘 ∈ R𝑛,𝑘 , we define 𝑃 B

Φ
𝑘
Φ†
𝑘
∈ R𝑛,𝑛 . We use 𝑃2 = 𝑃 and 𝑃∗ = 𝑃 . This holds because Φ†

𝑘
is

an orthogonal projection with respect to the scalar product. For an
explicit calculation, see Lemma 3. We have

�𝑃𝐹�2 = tr((𝑃𝐹 )∗ 𝑃𝐹 ) = tr(𝐹 ∗𝑃𝑃𝐹 ) = tr(𝐹 ∗𝑃𝐹 )

and similar��(𝐼 − 𝑃) 𝐹
��2

= tr(𝐹 ∗ (𝐼 − 𝑃) (𝐼 − 𝑃) 𝐹 ) = tr(𝐹 ∗ (𝐼 − 𝑃) 𝐹 ) .

Using the additivity of the trace, we arrive at the statement a).
Statement b) follows similarly using the invariance under cyclic
permutations of the trace. □
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Statement b) is an orthogonal splitting of the source space of the
operator 𝐹 . For this to hold, it is important to consider the Hilbert–
Schmidt norm. A weighted Frobenius norm would only reflect the
correct scalar product on the target space.

Lemma 2. Let 𝑋 ∈ R𝑚,𝑘 , 𝑌 ∈ R𝑛,𝑘 be linear operators between
finite-dimensional Hilbert spaces with scalar products 𝐺1 ∈ R𝑘,𝑘 and
𝐺2 ∈ R𝑛,𝑛 .

a) if 𝐺2 is diagonal the minimization argmin
Π∈Π

���ΠT𝑋 − 𝑌
���2

is

row separable,
b) if 𝐴 ∈ R𝑛,𝑛 is a positive definite diagonal matrix and 𝐺2 is

diagonal the minimization argmin
Π∈Π
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is column

separable.

To obtain Lemma 4.2 in the main text, we set 𝑋 = Φ2,𝑘𝐶
∗
12,

𝑌 = Φ1,𝑘 ,𝐺1 = 𝑀1,𝑘 , and𝐺2 = 𝑀1 and apply statement a). Similarly,
we set 𝑋T = 𝐶12Φ

†
2,𝑘𝑀

−1
2 , 𝑌T = Φ†

1,𝑘 , 𝐺1 = 𝑀1,𝑘 , and 𝐺2 = 𝐴 = 𝑀1
and apply statement b) to obtain the corresponding statement in
Section 4.3 in the main text on the dual perspective.

Proof. We first relate the Hilbert–Schmidt norm �𝐹�2 of a gen-
eral operator 𝐹 between finite-dimensional Hilbert spaces with
scalar products 𝐺 and 𝐺̃ , respectively, to the usual Frobenius norm
∥·∥2. This reads as
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where
√
𝐵 denotes the square root of positive-definite matrices 𝐵.

Applying this to the minimization in a), we can rewrite it as

argmin
Π∈Π
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As Π ∈ Π, we have that each column of Π ∈ {0, 1}𝑚,𝑛 has exactly
one non-zero entry. Hence, ΠT𝑋 is a row permutation of 𝑋 . As 𝐺2
is diagonal by assumption, the factor

√
𝐺2 is weighting the matrices

row-wise and can be omitted. The minimization can then be solved
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row-wise by setting Π(𝑖, 𝑗) = 1 if and only if

𝑖 = argmin
𝑟 ∈{1,...,𝑚}
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for all 𝑗 = 1, . . . , 𝑛, which is the same as
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For statement b), we rewrite the minimization as

argmin
Π∈Π
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Now, 𝑋Π is a permutation of the columns of 𝑋 . As
√
𝐺2 and 𝐴−1

are diagonal and multiplication from the right is weighting the
columns, we can solve the minimization by setting Π(𝑖, 𝑗) = 1 if
and only if

𝑖 = argmin
𝑟 ∈{1,...,𝑚}
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for all 𝑗 = 1, . . . , 𝑛. □

Lemma 3 (Orthogonal projection). The operatorΦ
𝑘
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∈ R𝑛,𝑛

is self-adjoint for an injective Φ𝑘 ∈ R𝑛,𝑘 with 𝑛 > 𝑘 > 0, i.e. it holds(
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1.2 Computation of the adjoint
Computation of the adjoint (Formula (7))
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2 ADDITIONAL VISUALIZATION
2.1 Additional qualitative results
In Figure 1 we give additional qualitative results for the remaining
methods in Figure 5 of the main paper, see Section 5.1 for details.
In Figure 2 we show a colormap representation for the experiment
described in Section 5.2 of the main document. Moreover, we show
the results for a shape pair with median error of our method in
Figure 3. In this example the extrinsic features of the shapes vary
strongly.

Table 1: Runtime report (in sec).

model (number vertices) LB basis Ours
Cat Lion (ca. 6k) 2.82/66.74 33.59/87.96
Homer (ca. 6.5k) 1.53/24.06 22.96/33.29
Head (ca. 15k) 2.31/42.29 38.28/131.88

2.2 Qualitative results for different values of 𝑘
We show qualitative results for the iterative process initialized by a
ground-truth vertex map as described in 5.4.2 in the main paper in
Figure 4.

2.3 Runtime analysis
We report runtime values in Table 1 for the experiments of the main
document shown in Figures 5 and 6. We distinguish between the
computation of the basis functions (first value) and the iterative
method (second value).
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Figure 1: Additional qualitative results for Figure 5 of the main paper. See Section 5.1 in main paper for details and Figure 5 of
the main paper for a quantitative evaluation of these results.
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Figure 2: Colormap representation of the results of Figure 8 in the main paper.
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target shape LABSmoothShells OursZoomOut RHMRHM

Figure 3: Correspondence of Shrec20 with median error of our method, see Section 5.4.2 for details.
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Figure 4: Qualitative visualization of results of one correspondence for different values of 𝑘 for the experiment in Figure 10 of
the main paper. We visualize the computed correspondence by showing the image of the resulting vertex map.
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